BIBS seminar Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration

2023. 9. 7 Sangyeon Shin

ORIGINAL RESEARCH published: 13 May 2022 doi: 10.3389/fgene.2022.884028

Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration

Chaoyi Yin^{1†}, Yangkun Cao^{1†}, Peishuo Sun¹, Hengyuan Zhang¹, Zhi Li²*, Ying Xu³ and Huiyan Sun¹*

¹School of Artificial Intelligence, Jilin University, Changchun, China, ²Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China, ³Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, United States

Contents

- 1. Introduction
- 2. Materials and Methods
- 3. Results
- 4. Discussion

Introduction

Heterogeneity among cancers

- Cancer is a complex and highly individualized disease with diverse subtypes.
- Molecular heterogeneity exists among different subtypes of the same cancer type.
- As cancer patients of distinct molecular subtypes usually **respond differently** to same treatment.
- So accurate subtype classification can not only assist precision diagnosis but also facilitate effective targeted treatment.

GNNs for a node classification task

- With the strong representation ability of graphstructured data, graph neural networks (GNNs) have achieved great success and are gradually used in a node classification task.
- It provides one way to obtain new representations of nodes by <u>combining the connectivity and features of its</u> <u>local neighborhood</u>.
- Although GNN are powerful, they are vulnerable when the skeleton of the graph and nodes' feature are **mixed** with noise.
- So a robust GNN model is necessary for accurately and stably predicting cancer subtypes.

Update

Α

Multi-Omics data integration for cancer

- It is well known that abnormal behaviors of cancer cells are the result of a series of gene mutations, gene copy number variation, and gene transcription level changes in key regulatory pathways.
- Integrating multiple types of omics data can provide a view to better understand the interrelationships of the involved biomolecules and their functions.
- Multi-omics data integration improves the prediction accuracy of patients' clinical outcome.

Introduction

M-GCN

- Using the Graph
- Removing noise

- Multi-Omics
- Predicting cancer subtypes

Materials and Methods

Materials

- TCGA, The Cancer Genome Atlas database
 - Breast Cancer (BRCA, n = 518, Vuong et al., 2014)
 - Estrogen receptor positive (ER+)
 - Human epidermal growth factor receptor 2 positive (HER2+)
 - Triple-negative breast cancer (TNBC)
 - Stomach adenocarcinoma (STAD, n = 221, Bass et al., 2014)
 - Chromosomal instability (CIN)
 - Epstein-Barr virus (EBV)
 - Microsatellite instability (MSI)
 - Genomically stable (GS)
- Consist of Gene expression, SNV(single nucleotide variants), CNV(copy number variation)

Preprocessing

TABLE 1 Dataset attributes.					
Cancer	#Subtype	#Samples of each subtype	#CNV features	#SNV features	# Gene expression features
BRCA	ER+ HER2+ TNBC	386 35 97	74	62	124
STAD	CIN EBV MSI GS	107 23 46 45	169	166	128

Gene expression

 \checkmark Filtering: expression value more than 10(BRCA) and 3(STAD)

✓ Normalize with FPKM(fragments per kilobase of exon per million fragments) and log2 transformation

Preprocessing

]	
Cancer	#Subtype	#Samples of each subtype	#CNV features	#SNV features	# Gene expression features
BRCA	ER+ HER2+ TNBC	386 35 97	74	62	124
STAD	CIN EBV MSI GS	107 23 46 45	169	166	128

SNV(Single Nucleotide Variant)

✓ Filtering: Mutation frequency more than 0.03(BRCA) and 0.1(STAD)

CNV(Copy Number Variation)

✓ Filtering: genes having significant amplifications or deletions rates

Methods

- ✓ Feature Selection
- ✓ Sample-Sample Similarity Graph Construction
- ✓ GCN Model Integrating Multi-Omics Data for Sample Classification
 - Multi-Omics Data Features Transformation
 - Neighbor Importance Estimation
 - Layer-Wise Graph Memory
 - Node Aggregation with Multi-View Representations Based on GCN
 - Loss and Optimization
- ✓ Evaluation Metrics

Feature Selection

✓ Low noise for constructing a purified sample-sample similarity graph and effective message passing

- ✓ HSIC Lasso(Yamada et al., 2014)
- supervised non-linear feature selection method

Feature Selection

Sample-Sample Similarity Graph Construction

 \checkmark Using Transcriptomic data and spearman's correlation

✓ Generate adjacency matrix $A \in \mathbb{R}^{n \times n}$

$$A_{ij} = \begin{cases} 1, & \rho_{ij} \ge r, p \le 0.05 \\ 0, & others \\ r: \text{ threshold of correlation coefficient} \\ p: p \text{ value of the correlation} \end{cases}$$
(2)

16

✓ The node's feature matrix X

$$X = [X_m, X_c, X_e] \begin{cases} X_m \in \mathbb{R}^{n \times f_1} & \text{SNV feature matrix} \\ X_c \in \mathbb{R}^{n \times f_2} & \text{CNV feature matrix} \\ X_e \in \mathbb{R}^{n \times f_3} & \text{Gene expression feature matrix} \end{cases}$$

Multi-Omics Data Features Transformation

✓ Non-linear transformations to improve samples' feature representations
 ✓ ReLU activation function

 $H^{0} = [\sigma(X_{m}W_{m}), \sigma(X_{c}W_{c}), \sigma(X_{e}W_{e})], \qquad (3)$ Latent feature matrix Learnable non-linear transformation $H^{0} \in \mathbb{R}^{n \times (f_{1}^{'} + f_{2}^{'} + f_{3}^{'})}$

Final output multi-view representations of samples

GNNGUARD

- ✓ When a new sample is concatenated, some noises could be introduced.
- ✓ To mitigate the impact of noises, GNNGUARD was used.
- It improves robustness of GCN models by **detecting fake edges** of graph structure and **removes their weights** in message passing of GCN.
- Implemented by 'neighbor importance estimation' and 'layer-wise graph memory'

Neighbor Importance Estimation

✓ For quantify the relevance between node i and node j

✓ Evaluate the importance weight of each edge based on similarity

$$s_{ij}^{k} = \begin{pmatrix} h_{i}^{k} \odot h_{j}^{k} \end{pmatrix} / (\parallel h_{i}^{k} \parallel_{2} \parallel h_{j}^{k} \parallel_{2}), \qquad (4) \quad \text{Cosine similarity}$$

$$\alpha_{ij}^{k} = \begin{cases} s_{ij}^{k} / \Sigma_{j \in N_{i}^{*}} s_{ij}^{k} \times \hat{N}_{i}^{k} / (\hat{N}_{i}^{k} + 1) & if i \neq j \\ 1 / (\hat{N}_{i}^{k} + 1) & if i = j \end{cases}, \qquad (5) \quad \begin{array}{l} \text{Normalized by} \\ \text{neighbor node} \\ (\hat{N}_{i}^{k} = \Sigma_{j \in N_{i}^{*}} \parallel s_{ij}^{k} \parallel_{0}) \end{cases}$$

$$1_{P_{0}} (\sigma(c_{ij}^{k} W)) = \begin{cases} 0 & if \ \sigma(c_{ij}^{k} W_{n}) < P_{0} \\ 1 & otherwise \end{cases}, \qquad (6) \quad \text{Edge pruning} \end{cases}$$

$$\hat{\alpha}_{ij}^{k} = \alpha_{ij}^{k} 1_{P_{0}} (\sigma(c_{ij}^{k} W_{n})). \qquad (7) \quad \text{Edge pruning} \end{cases}$$

Layer-Wise Graph Memory

✓ Because the weighted graph changes in each layer, for a stable training to keep partial memory

Weight for edge e $\varphi_{ii}^{k} = \beta \varphi_{ii}^{k-1} + (1 - \beta) \hat{\alpha}_{ii}^{k}, \quad \beta \in [0, 1]$

✓ Beta is a learnable parameter

✓ The M–GCN model can learn more robust and informative representations

(8)

Methods

GNNGUARD

Methods

Node Aggregation Based on GCN

✓ Learn comprehensive representations of sample nodes and multi-omics data

$$H^{k+1} = \sigma(\hat{A}^{k}H^{k}W^{k}), \qquad (9)$$

$$\hat{A}^{k} = \tilde{D}^{k-\frac{1}{2}}\tilde{A}^{k}\tilde{D}^{k-\frac{1}{2}} \text{ Normalization with division by Degree matrix D}$$

$$\tilde{D}^{k}_{ii} = \sum_{j}\tilde{A}^{k}_{ij} \text{ Degree matrix, sum of the edges that is connected to node } i$$

Neighbor information with adjacency matrix and weights of the edges
 Update the feature vector in the current layer based on previous layer

$$\boldsymbol{P} = \operatorname{softmax}(\boldsymbol{H}^k), \qquad \boldsymbol{P} \in \mathbb{R}^{n \times V}$$
(10)

 \checkmark Calculate the probability of which molecular subtyping of each sample belongs to

Loss and Optimization

✓ Cross-entropy is used as the loss function

$$\mathcal{L} = -\frac{1}{n} \sum_{i} \sum_{\nu=1}^{V} y_{i\nu} \log(\mathbf{P}_{i\nu}),$$

(11)

✓ *V* is the number of molecular subtypes
✓ *y* is the ground truth label of *i*-th sample

Subtype Classification Performance

- \checkmark Compare the performance of M–GCN with six methods on STAD and BRCA
- K-nearest neighbor classifier (KNN)
- Random Forest (RF)
- Support vector machine (SVM)
- Gaussian naïve Bayse (GNB)
- DeepCC: neural network-based method with transcriptomic data
- Li's method: GCN-based methods which integrates CNV and gene expression

Figure 3.

✓ Compare the performance of M–GCN with six methods on BRCA

Table 2.

TABLE 2 | Classification results of M-GCN on each subtype of BRCA.

	Ratio predicted as ER+ (%)	Ratio predicted as HER2+ (%)	Ratio predicted as TNBC (%)
ER+	95.9	0.51	3.59
HER2+	0	80	20
TNBC	7	3	90

The meaning of the bold values provided in Tables 2 and 3 is "the highest prediction ratio in each subtype".

Figure 4.

✓ Compare the performance of M–GCN with six methods on STAD

Table 3.

TABLE 3 Classification results of M-GCN on each subtype of STAD.				
	Ratio predicted as CIN	Ratio predicted as EBV	Ratio predicted as MSI	Ratio predicted as GS
	(%)	(%)	(%)	(%)
CIN	93.64	0	2.72	3.64
EBV	0	100	0	0
MSI	6	0	90	4
GS	20	4	6	70

Figure 5. Contribution of Each Element in STAD

✓ Conduct three ablation experiments

Results

- feature selection step - SNV data - CNV data

Figure 6. Contribution of Each Element in BRCA

✓ Conduct three ablation experiments

Results

- feature selection step - SNV data - CNV data

Biomarkers of Each Subtype

✓ Identify ten genes with highest z-score of each subtype

- z-score normalization on the expression matrix

- mean value of each gene in every subtype

✓ Perform biological process(BP) and KEGG pathway enrichment analysis

• •		
Molecular subtypes	Biomarker	Pathway and <i>p</i> -value
ER+	ESR1 AGR3 GATA3 PCSK6 FLJ45983 BCAS1 PMAIP1 GPR77 SCGB2A2 C10orf82	Response to estradiol (p-value = 1.09E-02)

TABLE 4 | Specific biomarkers of each BRCA subtype and their enrichment pathways. The listed biomarkers rank in descending order from high to low specific score.

Biomarkers of Each Subtype(BRCA)

FIGURE 7 | Heatmap of the z-score normalized gene expression of the molecular subtype-specific biomarker genes in BRCA. Green bar, pink bar, and blue bar at the top represent ER+, HER2+, and TNBC subtype, respectively.

Biomarkers of Each Subtype(STAD)

Discussion

✓ They propose a new framework M-GCN for molecular subtyping of cancer, which is empowered by integrated multi-omics data and a robust graph convolutional network.

✓ M-GCN first learns subtype-related features by **HSIC Lasso** to denoise data and construct a relatively pure sample–sample similarity graph.

✓ M-GCN assigns higher weights to similar nodes and utilizes layer-wise graph memory to limit the network to improve the **robustness** of the model based on **GNNGUARD**.

