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Introduction

Heterogeneity among cancers

« Cancer is a complex and highly individualized disease with diverse
subtypes.

- Molecular heterogeneity exists among different subtypes of the
same cancer type.

» As cancer patients of distinct molecular subtypes usually respond
differently to same treatment.

 So accurate subtype classification can not only assist precision
diagnosis but also facilitate effective targeted treatment.



Introduction

GNNSs for a node classification task

A
- With the strong representation ability of graph-

structured data, graph neural networks (GNNs) have
achieved great success and are gradually used in a node )
classification task.

- It provides one way to obtain new representations of O
nodes by combining the connectivity and features of its
local neighborhood.

 Although GNN are powerful, they are vulnerable when
the skeleton of the graph and nodes’ feature are mixed
with noise. &)

 So a robust GNN model is necessary for accurately and
stably predicting cancer subtypes.
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Introduction

Multi-Omics data integration for cancer

- It is well known that abnormal behaviors of cancer
cells are the result of a series of gene mutations, iy
gene copy number variation, and gene

transcription level changes in key regulatory el lo- %r:s

pathways. _®
- Integrating multiple types of omics data can EulEia

provide a view to better understand the e S

interrelationships of the involved biomolecules -

and their functions. :
 Multi-omics data integration improves the

prediction accuracy of patients’ clinical outcome.
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Materials

Materials

« TCGA, The Cancer Genome Atlas database

 Breast Cancer (BRCA, n = 518, Vuong et al., 2014)
 Estrogen receptor positive (ER+)
- Human epidermal growth factor receptor 2 positive (HER2+)
 Triple-negative breast cancer (TNBC)
« Stomach adenocarcinoma (STAD, n = 221, Bass et al., 2014)
« Chromosomal instability (CIN)
« Epstein-Barr virus (EBV)
« Microsatellite instability (IMSI)
« Genomically stable (GS)

» Consist of Gene expression, SNV(single nucleotide variants), CNV(copy
number variation)
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Materials

Preprocessing

TABLE 1 | Dataset attributes.

Cancer

BRCA

STAD

#Subtype #Samples of
each subtype

ER+ 386

HER2+ 35

TNBC 97

CIN 107

EBV 23

MSI 46

GS 45

Gene expression

#CNV features

74

169

#SNV features

62

166

V Filtering: expression value more than 10(BRCA) and 3(STAD)

# Gene
expression features

124

128

v Normalize with FPKM(fragments per kilobase of exon per million fragments)

and log2 transformation
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Materials

Preprocessing
TABLE 1 | Dataset attributes.
Cancer #Subtype #Samples of
each subtype
BRCA ER+ 386
HER2+ 35
TNBC 97
STAD CIN 107
EBV 23
MSI 46

GS

45

SNV(Single Nucleotide Variant)

V Filtering: Mutation frequency more than 0.03(BRCA) and 0.1(STAD)

CNV(Copy Number Variation)

V Filtering: genes having significant amplifications or deletions rates

#CNYV features

74

169

#SNV features

62

166

# Gene
expression features

124

128
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Methods

V Feature Selection
v Sample-Sample Similarity Graph Construction
V' GCN Model Integrating Multi-Omics Data for Sample Classification

- Multi-Omics Data Features Transformation

- Neighbor Importance Estimation

- Layer-Wise Graph Memory

- Node Aggregation with Multi-View Representations Based on GCN

- Loss and Optimization

v/ Evaluation Metrics
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Methods

Feature Selection

vV Low noise for constructing a purified sample-sample similarity graph and
effective message passing
v HSIC Lasso(Yamada et al., 2014)

- supervised non-linear feature selection method

Regression coefficient

i d = (D) (12
min
ys]Rd 9 " _Zl=1YI “Frob-l-A ""1,S.t. Y12 V2 - "’YdZO’ (1)
/ Frobenius norm
— : larizati
L = F L-r Regression coefficient of /-th feature A: regularization parameter

T
I=1,-,1.l,

} Centered Gram matrix, Kernel Function

KY = rkOr
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Feature Selection
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Sample-Sample Similarity Graph Construction

v Using Transcriptomic data and spearman’s correlation
V Generate adjacency matrix A € R™"

Ly  pe2r p<0.05
N ij
Aij 0, others ’ (2)

L r: threshold of correlation coefficient
p: p value of the correlation

v The node’s feature matrix X
" X, € ]Rnxf 1 SNV feature matrix
X = [Xm> X;, Xe] 1 X, € Ranz CNV feature matrix

Xe G Ran‘_; Gene expression feature matrix

16



Methods

Multi-Omics Data Features Transformation

v Non-linear transformations to improve samples’ feature representations

v/ ReL.U activation function

ReLU
H° = [0(X,, W,,) o[ X.W.), 0 (X W], 3)

Latent feature matrix Learnable non-linear
transformation

CHO e RS

Final output multi-view representations of samples
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GNNGUARD

v When a new sample is concatenated, some noises could be introduced.
v To mitigate the impact of noises, GNNGUARD was used.

- It improves robustness of GCN models by detecting fake edges of graph
structure and removes their weights in message passing of GCN.

- Implemented by ‘neighbor importance estimation’ and ‘layer-wise graph
memory’
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Methods

Neighbor Importance Estimation

V For quantify the relevance between node i and node j

v Evaluate the importance weight of each edge based on similarity

S’.‘. = (hk 0) hk) / ( | h:‘llz | h’.‘||2), (4) Cosine similarity

(5) Normalized by
nelghbor node

) (N7 =Zjen: Il sEllo)
lpo(G(cl.‘.W)) = { 0 if G(CZ'W") <FPo . (6) Edge pruning
o

1 otherwise

i il PO(O'(C:-C]- Wn) ) (7) Edge pruning
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Layer-Wise Graph Memory

V' Because the weighted graph changes in each layer, for a stable training to keep

partial memory

Weight for edge e

of = Poi '+ (1-P)a;, Belo 1] (8)

V Beta is a learnable parameter
v/ The M-GCN model can learn more robust and informative representations
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GNNGUARD

A B

I k-1 I

P

h: Update - Update

k-1 - .. —
Q; Weight Coefficient between Vi .
Pruned Edge o . gNo devand Fde i h," | Node Representation
Inputof @)} p . Message Passin Update the
. “ R / . a representation of node




Methods

Node Aggregation Based on GCN

vV Learn comprehensive representations of sample nodes and multi-omics data

~k
H*' = o A" H*W*), (9)
A k o I('_'l ~ k b IC'—l ° . ° o o o °
A =D *A D ? Normalization with division by Degree matrix D

~k ~k . . .
D, = Zj Aij Degree matrix, sum of the edges that is connected to node i

V' Neighbor information with adjacency matrix and weights of the edges

v Update the feature vector in the current layer based on previous layer

P = softmax(H"), PeR™ (10
v Calculate the probability of which molecular subtyping of each sample belongs to
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Methods

Loss and Optimization
V Cross-entropy is used as the loss function

1
L — _;Zizz;l)’iv log (Piv),

V Vis the number of molecular subtypes
V yis the ground truth label of i-th sample

(11)
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Results

Subtype Classification Performance

vV Compare the performance of M-GCN with six methods on STAD and BRCA
- K-nearest neighbor classifier (KNN)

- Random Forest (RF)

- Support vector machine (SVM)

- Gaussian naive Bayse (GNB)

- DeepCC: neural network-based method with transcriptomic data

- Li’s method: GCN-based methods which integrates CNV and gene expression
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Results

Figure 3.
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FIGURE 3 | Prediction performance under four evaluation metrics of seven methods in the BRCA dataset. Pink bar represents the final performance of M-GCN;
purple bar, orange bar, yellow bar, and green bar refer to the performance of KNN, RF, SVM, and GNB, respectively. Light blue bar is for the performance of DeepCC,
and dark blue bar is for the performance of Li’'s method.

v Compare the performance of M-GCN with six methods on BRCA
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Results

Table 2.

TABLE 2 | Classification results of M-GCN on each subtype of BRCA.

Ratio predicted as ER+ Ratio predicted as HER2+ Ratio predicted as TNBC
(%) (%) (%)
ER+ 95.9 0.51 3.59
HER2+ 0 80 20
TNBC 7 3 920

The meaning of the bold values provided in Tables 2 and 3 is “the highest prediction ratio in each subtype”.
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Figure 4.
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FIGURE 4 | Prediction performance under four evaluation metrics of seven methods in the STAD dataset. Pink bar represents the final performance of M-GCN;
purple bar, orange bar, yellow bar, and green bar refer to the performance of KNN, RF, SVM, and GNB, respectively. Light blue bar is for the performance of DeepCC,
and dark blue bar is for the performance of Li’'s method.

vV Compare the performance of M-GCN with six methods on STAD



Results

Table 3.

TABLE 3 | Classification results of M-GCN on each subtype of STAD.

Ratio predicted as CIN Ratio predicted as EBV

(%) (%)
CIN 93.64 0
EBV 0 100
MSI 6 0
GS 20 4

Ratio predicted as MSI
(%)

202
0
20
6

Ratio predicted as GS
(%)

3.64
0
4

70
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Results

Figure 5. Contribution of Each Element in STAD
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FIGURE 5 | Results of ablation experiment of M-GCN in STAD. Pink bar represents the final performance of M-GCN, orange bar represents the performance of
M-GCN without feature selection, green bar is for the performance of M-GCN without SNV features, and blue bar is for the performance of M-GCN without CNV features.

v Conduct three ablation experiments

- feature selection step

- SNV data

- CNV data
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Results

Figure 6. Contribution of Each Element in BRCA
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FIGURE 6 | Results of ablation experiment of M-GCN in BRCA. Pink bar represents the final performance of M-GCN, orange bar represents the performance of
M-GCN without feature selection, green bar is for the performance of M-GCN without SNV features, and blue bar is for the performance of M-GCN without CNV features.

v Conduct three ablation experiments
- feature selection step -SNVdata - CNVdata 31



Results

Biomarkers of Each Subtype

V Identify ten genes with highest z-score of each subtype
- Z-score normalization on the expression matrix
- mean value of each gene in every subtype

V' Perform biological process(BP) and KEGG pathway enrichment analysis

TABLE 4 | Specific biomarkers of each BRCA subtype and their enrichment pathways. The listed biomarkers rank in descending order from high to low specific score.
Molecular subtypes Biomarker Pathway and p-value

ER+ ESR1 Response to estradiol (p-value = 1.09E-02)
AGRS3
GATA3
PCSK6
FLJ45983
BCAS1
PMAIP1
GPR77
SCGB2A2
C100rf82
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Results

Biomarkers of Each Subtype(BRCA)
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the top represent ER+, HER2+, and TNBC subtype, respectively.
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FIGURE 7 | Heatmap of the z-score normalized gene expression of the molecular subtype-specific biomarker genes in BRCA. Green bar, pink bar, and blue bar at
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Results

Biomarkers of Each Subtype(STAD)
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FIGURE 8 | Heatmap of the z-score normalized gene expression of the molecular subtype-specific biomarker genes in STAD. Green bar, pink bar, blue bar, and
purple bar at the top represent CIN, EBV, GS, and MSI subtype, respectively.
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Discussion

Discussion

V' They propose a new framework M-GCN for molecular subtyping of cancer,
which is empowered by integrated multi-omics data and a robust graph
convolutional network.

v M-GCN first learns subtype-related features by HSIC Lasso to denoise data and
construct a relatively pure sample—sample similarity graph.

v/ M-GCN assigns higher weights to similar nodes and utilizes layer-wise graph
memory to limit the network to improve the robustness of the model based on
GNNGUARD.
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