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Introduction

Introduction to multi-omics 
• The rise of multi-omics 

– Interest in combining different omics data types is growing, 
leading to a surge in multi-omics data. 

– Multi-omics is a method in biology that integrate data from 
various ‘omics’ layer like genomics, transcriptomics, and 
proteome.

– By looking at many types of data together, scientists get a 
clearer picture of how cells work. 

– This approach helps in understanding diseases better, 
finding new markers for them, and seeking treatments. 

– It's very useful for complex diseases, where just looking at 
one type of data might not give the full story. 

Source: https://en.wikipedia.org/wiki/Multiomics

https://en.wikipedia.org/wiki/Multiomics
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Introduction

Introduction to multi-omics 
• The rise of multi-omics 

– While data collection in multi-omics is 
advancing quickly, the development of 
analytical methods is lagging.

– Interpreting data from multiple sources 
is complex and can pose challenges.

– Notable multi-omics databases include 
TCGA, ENCODE, and GTEx, which 
provide rich sources of data.

DOI: 10.1038/ng.2764

http://dx.doi.org/10.1038/ng.2764
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Introduction

Existing Integrative Methods
• Current tools for multi-omics analysis 

– Recently, a number of methods has been proposed performing multi-omics data analysis: 
• Similarity Network Fusion (SNF)
• MOFA 
• iCluster+

– These methods, while helpful, have their limitations: they often tend to produce outputs focused on genes 
or specific omics features. 

– For deeper biological insights, researcher can further employ enrichment tests such as GSVA and GSEA
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Introduction

Pathway-based analysis 
• Pathway as self-explanatory biological mechanisms: 

– Pathways provide a comprehensive view of how different genes and proteins interact in a coordinated 
manner. 

– By looking at pathways, researchers can quickly grasp the broader biological context, rather than 
getting lost in individual genes or proteins.

• Current methods providing pathway outputs: 
– Tools like ActivePathway, multiGSEA, and MOGSA are already paving the way in generating pathway-

centric outputs. 
• Advantages of Pathway Enrichment Scores: 

– Pathway enrichment scores allow for a quantitative understanding of how significantly a certain pathway 
is affected or altered. 

– This not only aids in identifying crucial pathways but also gives a relative measure of its significance in 
the biological context.
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Introduction

• Advantages
– Pathway Ranking: MOPA prioritizes pathways based 

on their relevance and significance in the context of 
the multi-omics data and associated clinical features.

– mES & OCR Metrics: These innovative metrics 
introduced by MOPA enable a deeper understanding 
of pathway involvement and provide a clearer picture 
of the biological processes at play.

• MOPA’s edge over other tools 
– While other tools provide pieces of the multi-omics 

puzzle, MOPA stands out by offering a more holistic 
view, seamlessly integrating diverse data types and 
emphasizing pathways that are crucial in clinical 
contexts.

MOPA - The Next Step in Multi-omics Analysis
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Introduction

• Definition and Importance of mES
– mES (Multi-Omics Enrichment Score) provides a single value 

that encapsulates the collective impact of all omics data on a 
particular pathway. 

– It offers a streamlined and simplified metric that combines the 
diverse omics layers into one coherent signal.

– mES simplifies complex multi-omics data, enabling 
researchers to pinpoint crucial pathways without getting 
overwhelmed by the intricacies of each individual omics layer.

Understanding mES
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Introduction

• Definition and Importance of OCR
– OCR (Omics Contribution Ratio) dissects the mES score, 

revealing the contribution of each specific omics layer to 
the overall score. 

– It provides a breakdown of how much each omics type 
influences a pathway's activity.

– While mES gives an overall view, OCR delves deeper, 
ensuring researchers understand the underlying dynamics of 
each omics layer, offering a clear picture of their interplay and 
respective impacts.

Understanding OCR 
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Introduction

• Definition and Importance of mES
– Pathway Ranking: MOPA prioritizes pathways based 

on their relevance and significance in the context of 
the multi-omics data and associated clinical features.

– mES & OCR Metrics: These innovative metrics 
introduced by MOPA enable a deeper understanding 
of pathway involvement and provide a clearer picture 
of the biological processes at play.

• MOPA’s edge over other tools 
– While other tools provide pieces of the multi-omics 

puzzle, MOPA stands out by offering a more holistic 
view, seamlessly integrating diverse data types and 
emphasizing pathways that are crucial in clinical 
contexts.

MOPA - The Next Step in Multi-omics Analysis
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Materials 

• Gene expression (Transcriptomics) 
– Process by which the information stored in genes is used to produce functional products, mainly 

proteins. 
• Methylation (Epigenomics)

– DNA methylation is a chemical modification in which a methyl group is added to the DNA molecule, 
typically at cytosine residues. 

– DNA methylation is one aspect of epigenomics, which studies heritable changes in gene 
expression without changes in the DNA sequence itself. 

• Micro RNAs (microRNomics) 
– Micro RNAs(miRNAs) are small non-coding RNAs that play a crucial role in regulating gene 

expression post-transcriptionally. 
– They bind to the mRNA and either inhibit its translation or lead to its degradation. 

Multi-omics dataset
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Materials 

• Gene expression – Methylation – miRNA 
– DNA methylation influences both transcription of gene and 

miRNA. 
• Methylation in promoter region of the mRNA and miRNA can lead to its 

reduced expression. 
– miRNA can regulate gene expression post-transcriptionally. 

• They bind to target mRNAs and either inhibit their translation or lead to their 
degradation. 

– Paradoxical mechanism in Cancer 
• Recent studies have observed that Hypermethylation sometimes correlates 

with gene activation. The phenomenon may introduce new gene regulation 
mechanisms, particularly in development, tumor formation, and metastasis1.

• Likewise, miRNA biogenesis is influenced by DNA methylation around its 
coding sequence. Removing DNA methylation from miRNA loci results in their 
downregulation2.

Multi-omics relationship 

https://doi.org/10.1016/j.trecan.2020.02.007

10.1093/bfgp/elw013

1. Smith J, Sen S, Weeks RJ, Eccles MR, Chatterjee A. Promoter DNA Hypermethylation and Paradoxical Gene Activation. Trends in Cancer. 2020;6(5):392-406.
2. Yang X, Shao X, Gao L, Zhang S. Comparative DNA methylation analysis to decipher common and cell type-specific patterns among multiple cell types. 

Briefings in Functional Genomics. 2016;15:elw013.

https://doi.org/10.1016/j.trecan.2020.02.007
http://dx.doi.org/10.1093/bfgp/elw013
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Materials 

• Data collection
– Multi-omics data was collected in patient-matched 

manner. 
– The multi-omics data of patients from various cohorts 

in TCGA data portal was used. 
– Multi-omics data captured gene-regulatory relations 

between different omics layers that significantly varied 
between clinical feature groups. 

Multi-omics dataset
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Materials 

• Feature scaling and conversion 
– Each omics layer contains varying features, scales, 

and data types.
– MOPA detects gene-regulatory cis-relations across 

multi-omics layers. 
– Omics data is transformed into gene-level data, 

streamlining pathway analysis and ensuring each 
omics layer shares consistent dimensions. 

Multi-omics dataset

Methylation

mRNA

miRNA

mRNA

Methylation

miRNA
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Materials 

• Tensor decomposition
– Combines omics slices into a tensor (or cube) for 

latent feature identification.
– By using MONTI for non-negative tensor 

decomposition, which selects features related to a 
specific clinical feature1. 

– Omics data is transformed into gene-level data, 
streamlining pathway analysis and ensuring each 
omics layer shares consistent dimensions. 

Multi-omics dataset

1. Jung I, Kim M, Rhee S, Lim S, Kim S. MONTI: A Multi-Omics Non-negative Tensor Decomposition Framework for Gene-Level Integrative Analysis. Front Genet. 2021;12:682841.
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Materials 

• Application & Evaluation
– MOPA was used on nine cancer types, employing 

mRNA, miRNA and methylation data. 
– Aimed to demonstrate the superiority of MOPA’s 

results using the OCR metric. 
– Performance of MOPA was gauged against four 

other pathway scoring methods. This comparison 
highlighted the efficacy of multi-omics over single-
omics analysis. 

Multi-omics dataset  
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Materials 

Cancer dataset
Cancer 
type

Clinical feature No. of 
groups

Clinical feature groups No. of 
samples

COAD Molecular subtype 4 CMS1, CMS2, CMS3, CMS4 234

STAD Molecular subtype 4 CIN, EBV, GS, MSI 305

BRCA Subtype 4 LumA, LumB, HER2, Basal 595

HNSC Gender 2 Female, male 298

PRAD Methylation cluster 4 1, 2, 3, 4 328

KIRC Gender 2 Female, male 252

LUAD Methylation Signature 3 Low, intermediate, high 181

THCA BRAF mutation group 2 0, 1 490

UCEC mRNA expression cluster 3 1, 2, 3 221

– Nine cancer types were 
investigated.

– Samples were compiled 
based on available 
clinical feature labels. 

– Clinical features for 
each cancer type and 
their values presented 
table in next table. 
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Materials 

• Objective: 
– Validate and demonstrate the utility of MOPA

• Studies performed on: 
– Molecular subtypes in colon and stomach adenocarcinoma cohorts. 

• Findings:
– MOPA reproduced significant biological results specific to each cancer type and its clinical feature 

groups. 
– Clinical feature groups are attributes from medical records like cancer subtype, age, gender, and stage. 

Use Case Study Dataset 
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Materials 

• Pathway source: 
– Human KEGG pathway database1

• Analysis method: 
– miRNA and methylation values were quantified per genes 

• Data processing for pathway analysis
– Average expression of miRNAs that target a specific gene was assigned to that gene.
– miRDB was used for grouping miRNAs per target gene2. 
– Average beta value of probes located within 2Kbp upstream of a gene’s transcription start site was 

assigned.
– Genes without associated miRNAs or methylation probes were assigned a value of zero.
– Non-coding genes were excluded from pathways. 

Pathway and Annotation data

1. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research. 2017;45(D1):D353-D61.
2. Wang X. Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-ligation studies. Bioinformatics. 2016;32(9):1316-22.
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Methods

• Three main steps of MOPA workflow 
– Preprocessing multi-omics data and detect latent 

gene-level features.
– Compute pathway enrichment scores from selected 

features.
– Conduct downstream analyses on pathway 

enrichment scores. 

Analysis Workflow Overview
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Methods

• Objective: Gene-level multi-omics feature selection 
• Method: MONTI – Integrates multi-omics data and outputs latent gene features. 

– With sample labels: MONTI (supervised) selects features associated with them. 
– Without labels: MOPA proceeds in an unsupervised manner. 
– Input: Three dimensional Tensor (𝑋!"#)

• i: number of genes 
• j: number of samples 
• k: number of omics

• Latent features: Computed using the PARAFAC tensor factorization method1.
– Tensor decomposition: Result in three loading matrices: S, G, and O 
– Rank determine latent gene-level omics features; the R is predetermined. 

Step1. Multi-omics Feature Selection

1. Bro R. PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems. 1997;38(2):149-71.
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Methods

Step1. Multi-omics Feature Selection

• S (Sample component)
– This matrix represent how each 

sample associates with the latent 
features derived from the tensor 
decomposition. 

– Each row pertains to a sample, and 
each column pertains to a feature. 

– A high value in a specific cell indicates 
a strong association of that sample 
with corresponding feature

• Tensor decomposition: method used to break down a tensor into its 
constituent parts, allowing us to represent complex multi-dimensional data in 
a more interpretable
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Methods

Step 1. Multi-omics Feature Selection
• Min-max scaling(?) of sample feature association 

• In the code, they used Quantile normalization not min-max scaling
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Methods

Step 1. Multi-omics Feature Selection
•

– Kernel type: Gaussian Kernel

– By testing a range of CDF 
thresholds for selecting 
informative features, 0.6 showed 
robust results across several 
different datasets as shown in 
next Figure. 

– They used 0.6 as threshold for 
feature selection.  

• After then, they performed kernel density estimation with 𝑺𝒊" of each sample
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Methods

Step 2. Compute pathway enrichment scores from selected features
• Calculating mES

– The multi-omics Enrichment Score (mES) measures the multi-
omics signal strength of a pathway in each sample. A high mES
score indicates that a significantly large portion of genes belonging 
to a specific pathway are highly activated in terms of multi-omics, 
as compared to those not part of the pathway.

• Three types of input 
– Decomposed sample (S) and gene (G) matrix.  
– Gene Matrix Transposed file: indicating the gene memberships to 

pathways 
– The sample assigned features "𝒇
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Methods

Step 2. Compute pathway enrichment scores from selected features
• Methods

– For each gene j and sample i, we need to calculate 𝑟!"

• 𝑠! "#
$ : sample feature values calculated in step 1. 

• 𝑔 "#
$ : standardized and positive scaled of 𝑔 "#. 

– The vector 𝑟! is sorted to order genes. 
– mES is computed using the Kolmogorov–Smirnov (KS) random 

walk statistic, measuring similarity between two distributions: 
genes with and without membership to a pathway.
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Methods

Step 2. Compute pathway enrichment scores from selected features
• Methods

– The result will be the cumulative difference, 𝑑!"$, up to the j-th ordered gene between the two 
distributions of pathway t in sample I as shown in below: 

• 𝑝(&): the set of genes in pathway t
• 𝐼(𝐺( ∈ 𝑝 & ) : the indicator function that outputs 1 if the l-th gene is a member of pathway t and 0 otherwise. 
• 𝑞 refers to the number of genes in the dataset. 
• 𝑑!)& is computed for each sample, gene, and pathway. 

– The gene with a high 𝑟!% value starts calculation and 𝑑!"$ value shows the difference between 
genes belong to the pathway and genes not. 
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Methods

Step 2. Compute pathway enrichment scores from selected features
• Calculating OCR

– The Omics Contribution Rate (OCR) shows the extent to which 
each type of omics (e.g., genomics, proteomics, etc.) contributes to 
the mES. It aims to interpret how much a pathway's activity is 
influenced by each type of omics data.

• Three types of input 
– Decomposed sample (S), gene (G) and omics (O) matrix.  
– Gene Matrix Transposed file: indicating the gene memberships to 

pathways.
– The sample assigned features "𝒇
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Methods

Step 2. Compute pathway enrichment scores from selected features
• Methods

– Features commonly assigned to samples within a clinical 
feature group are collected.
• Features shared by 50% of the samples in a group are gathered 

from 𝑆!.
– The strongest associated feature of each gene is selected 

from 𝑔"& for every gene in 𝑝 𝑡
• The omics profiles of features are then summed to compute 

below: 
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Methods

Step 3. Downstream analysis using mES and OCR 
• Types of downstream analysis 

– Survival analysis with mES
– Pathway network visualization (Cytoscape) 
– Multi-omics characteristic visualization (UMAP) 
– Association test among clinical feature group with 𝑟"
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Results

The classification 
performance comparison
• The results were compared to 

other pathway enrichment tools 
• By training a Multi-Layer 

Perceptron model on the 
acquired biological features for 
predicting target labels, the 10-
cross validated average f1 
score of sample classification
results was measured.  

• Among the clinical features 
subtype, mutation clusters 
showed high F1 scores in all the 
tools. 
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Results

The classification 
performance comparison
• MOPA showed the highest F1 

scores in COAD, STAD subtypes, 
mutations, and hypermethylation 
clusters.

• For performance evaluation they 
used four different classification 
methods as shown next slide. 
– Random Forest 
– Support Vector Machine 
– K-Nearest Neighbor 
– Multi-layer Perceptron 
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Results

The classification performance comparison
• Overall, MOPA_UN classifiers 

achieved higher F1-scores in all 
the tasks. 

• The results show that utilizing 
multi-omics data is advantageous 
over single-omics data.
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Results

Comparison of significant pathways with SOTA 
• ActivePathways: A state-of-the-art method that calculates a pathway's p-value for each omics 

individually. Outputs a list of significant pathways.
• ActivePathways identified 7 significant pathways.

– 6 out of 7 pathways were significant in both MOPA and ActivePathways.
– Least Agreement: "Lysosome" pathway

• While MOPA's performance isn't superior, it matches or surpasses compared methods.
• MOPA offers richer context interpretation for multi-omics data.
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Results

Clustering Quality Anlalysis
• Adjusted Rand Index (ARI) was 

employed to measure the quality of 
clustering

• Molecular subtypes served as the 
ground truth labels.

• ARI was calculated from bootstrap 
sampling (30% samples, 1,000 
times).

• MOPA showed promising results in 
detecting sample subgroups in an 
unsupervised manner.
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Results

MOPA's Flexibility in Label-less Situations
• In scenarios without clinical label info:

– mES can be computed without any label info.
– OCR requires labels; can use K-means clustering 

on mES matrix to create sample groups.
• MOPA's ability highlighted: COAD and STAD sample 

clusters closely matched the actual subtype sample 
groups.
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Results

Use case Study: COAD  
– The study aimed to understand pathways associated 

with COAD molecular subtypes using mES and OCR 
metrics via MOPA.

– From COAD data, 106 pathways had significant 
survival p-values.

– Samples were divided into high mES and low mES
groups. Three most significant pathways were : 'Salivary 
secretion', 'Complement and coagulation cascades', and 
'Staphylococcus aureus infection’.
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Results

Use case Study: COAD  
• Survival analysis

– From the result, they observed that the survival probability 
of high mES group was significantly lower than other 
subtype samples. 

– The three pathways related to “TGF-beta signaling” 
pathway.  

– However, the p-value of “TGF-beta signaling” pathway 
was not as significant as the others. 
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Results

Use case Study: COAD  
– According to the OCR of the “TGF-beta 

signaling pathway”, they observed that the 
CMS4 subtype had a distinctively different 
ratio of omics activation.  

– The gene and miRNA expression significantly 
differed between CMS4 and the other 
subtypes. 

– This was also observed in three other 
pathways in previously mentioned. 

– Collectively, it implies that the CMS4 subtype 
yields a very different multi-omics landscape. 
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Results

Use case Study: COAD  
• Network visualization

– To compare the complete set of pathways 
with significant p-values, a pathway network 
specific to each subtype was constructed 
using Cytoscape. 
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Discussion

• Objective
– Interpret pathways using multi-omics in terms of omics activation in cis-relation. 

• Approach
– Comparison of multi-omics activity across clinical feature (sub-group) using mES and OCR 

metrics. 
– Benefits over traditional methods: Easier interpretation than listing genes, which would 

require further enrichment analysis. 
• Performance

– Tested on nine different cancer multi-omics datasets. MOPA showed equal or superior 
performance compared to other tools. 

• Flexibility 
– Not limited to just three omics types and not solely designed for cancer studies. 
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Discussion

• Limitations
– MOPA may not be suitable for small datasets due to tensor decomposition constraints.
– Optimal performance observed with a rank of 120 across the three studied omics types.
– Longer execution time compared to other methods:

• Future Applications
– Extendable to other domains like single-cell COVID studies.
– Importance: As multi-omics data grows in complexity and dimensionality, MOPA offers an 

accessible way to understand underlying biology from multiple perspectives.
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Thank you for listening
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Appendix 1. SNF

Similarity Network Fusion
– Step1. Creation of similarity network 

• Standardization of each omics
• For each omic dataset, create a network:

– Nodes: individual patients 
– Edges: Measure of similarity between patients

• Quantile normalization to address differences in metric 
ranges

– Step2. Fusion of similarity network 
• To combine multiple patients’ similarity networks from 

various –omics into one integrated network 
• Decompose each dataset’s similarity into two

– Global structure: overall similarity of a patient to all others
– Local structure: similarity of a patients to its “K”-most similar 

patients 

• Iteratively fuse decomposed network by diffusing 
similarity information through common edges
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Appendix 2. Performance measure

F1 Score
• Definition: 

– The F1 Score is a performance metric for binary classification. It is the harmonic 
mean of precision and recall.

• Formula:
– 𝑭𝟏 = 𝟐 × 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏3𝑹𝒆𝒄𝒂𝒍𝒍
– Precision is the ratio of correctly predicted positive observations to the total 

predicted positives. 
• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = *+,- ./0!&!1-0

*+,- ./0!&!1-023450- ./0!&!1-0

– Recall (or Sensitivity) is the ratio of correctly predicted positive observations to 
the all actual positives. 
• 𝑅𝑒𝑐𝑎𝑙𝑙 = "#$% &'()*)+%(

"#$% &'()*)+%(,-./(% 0%1.*)+%(
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Appendix 3. Performance measure

F1 Score for multi-class classification
• Micro-average F1 Score:

– First, calculate the aggregate false positives, false negatives, and true positives 
across all the classes.

– Then, use these aggregated counts to compute the overall precision and recall, 
and subsequently the F1 score.

• Macro-average F1 Score: 
– Compute the F1 score independently for each class and then take the average 

(without considering the class distribution).
– This gives equal weight to each class, irrespective of its frequency. 



47

Appendix 4. Performance measure

Adjusted Rand Index 
• Rand Index 

– The Rand Index computes the similarity between two clusterings by considering all pairs of 
samples and counting pairs that are assigned in the same or different clusters.

– Given two clusterings U (true labels) and V (predicted labels) of a set of n objects 
• a: the number of pairs of objects that are in the same set in U of and in the same set in V. 
• b: the number of pairs of objects that are in the different sets in U and V

• 𝑅𝐼 = 426
!
"
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Appendix 5. Performance measure

Adjusted Rand Index 
• Expected Rand Index

– Let’s denote by 𝑃!" the number of object pairs that are both in cluster 𝑈! of 𝑈 and cluster 𝑉! of 𝑉.
• 𝐸 𝑎 = ∑!∑)

7#$
8

• 𝐸 𝑎 = ∑!∑)
9#
8 − 7#$

8

• 𝐸[𝑅𝐼] = :[4]2:[6]
!
"

• Adjusted Rand Index
– The ARI adjusts the Rand Index by considering the random chance of any two points being 

clustered together.

– Mathematically, the Adjusted Rand Index is given by: 𝐴𝑅𝐼 = 45 6789:;$:< 45
=>8 45 6789:;$:< 45
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Appendix 6. Performance measure

Example of ARI calculation
– Let’s assume we have 5 objects {A,B,C,D,E} 

• True labels 
– Cluster U1: {A,B} 
– Cluster U2: {C,D,E} 

• Predicted labels 
– Cluster V1: {A,C} 
– Cluster V2: {B,D,E} 

– Let’s compute the values needed: 
• (A,C) is in Cluster V1, but they are in different clusters in U. So they don’t contribute to a. 
• (D,E) are in Cluster V2 and also in Cluster U2. This is the only pair that contributes to a. 
• 𝑎 = 1
• 𝑏 = 5 |{(A,B), (A,D), (A,E), (B,C), and (C,D)}|
• In case of simplified version of 𝐸 𝑅𝐼 , we can assume 𝐸 𝑅𝐼 = 0.5. 
• Then 𝐴𝑅𝐼 = =.? @=.A

B@=.A
= 0.2
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Appendix 7. UMAP 

Uniform Manifold Approximation 
• Purpose 

– The primary purpose of UMAP is to capture both local and global structures of data in lower-
dimensional space.

– This serves Visualization: Making it easier to visualize and interpret complex high-dimensional 
data by projecting it into 2D or 3D. 

• Methods: 
– Construct a Graph(Fuzzy simplical set construction): For each data point in the high-

dimensional space, UMAP build a neighborhood graph where nearby points are connected by 
edges. 

– Optimize the Embedding: The algorithm then seeks a low-dim representation where the 
distance between points in the new space respects their proximity in the original high-dim. 
• This is done by minimizing the ”cross-entropy” between the distributions of distances in the two spaces. 


