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Multi-omics data

« High-throughput biological data generation technologies have evolved rapidly
« Genomics, epigenomics, transcriptomics, proteomics, and metabolomics
« Various omics data can help understanding complex diseases at the molecular level for better

disease treatment and more accurate clinical decision-making

« Curse of dimensionality
 When the number of molecular features in a dataset is very large compared to the number of

samples, making it difficult to analyze and interpret the data effectively



Multi-omics integration

« Simple approaches
» Unsupervised
« perform clustering and classification tasks by integrating multi-omics data into a single low-
dimensional embedding space
» lack of additional information on sample labels, so cannot achieve end-to-end training, which
often leads to sub-optimal results
« Supervised
« feature concatenation (combining data from each omics), or analyze each data type
independently and combine the prediction results (combining prediction result from each omics)
« cannot effectively consider the correlation between different omics data types and prediction

results may be biased towards certain omics



Multi-omics integration

« Considering correlation of each omics type

* Focus on the correlation between different omics

 GRridge (van de Wiel et al.): adaptive group-regularized (logistic) ridge regression method to
classify cervical cancer using methylation microarray data

« DIABLO (Singh et al.): extended the sparse generalized canonical correlation analysis into a
supervised classification framework

« SMSPL (Yang et al.): interactively recommends high-confidence samples from different data types
in a soft-weighted manner to predict cancer subtypes

« These methods assumed simple linearity among omics features, which is not applicable for complex

biological study



Multi-omics integration

« Deep learning approaches

» Focus on the capturing nonlinear relationship, especially using Graph Convolutional Network (GCN)

« MOoGCN (Li et al.): graph convolutional network which adopts autoencoder (AE) and similarity
network fusion (SNF) methods to obtain multi-omics integrated embedding information and similarity
network, respectively

« MOGONET (Wang et al.): extended the sparse generalized canonical correlation analysis into a

supervised classification framework



Multi-omics integration

« Limitation of deep learning approaches
« Using fixed sample similarity networks to learn sample embedding information - incorrect graph
makes incorrect results
« Simply treating the embedding information of different omics equally in the process of omics
integration - fails to obtain more reasonable and rich integrated information

« Hard to select the biomarkers during the model training
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Main contribution

Learning an omic-specific optimal sample similarity network in adaptive graph learning
manner

Contribution of each omics can be treated differently, and effectively capture common and
complementary information

Selecting important biomarkers during end-to-end training without using independent feature

selection methods



Method



Workflow

FSDGCN for omic-specific learning
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Overview

* Basic information
« Graph Convolutional Network (GCN)

« Attention mechanism

« FSDGCN (dynamic graph convolutional network with feature selection)
» Architecture

« Feature selection
« MOAM (multi-omics attention mechanism)
* OIRL (omic-integrated representation learning)

* Optimization



Basic information

Graph Convolutional Network (GCN)

TARGET NODE
* Architecture

» Use neighborhood information to predict the states of target node
* Inputs are 1) adjacency matrix (determine graph structure) and 2)

node feature matrix (determine the value(s) of each node)

« 3 steps to train the model

« Aggregate & Combining the neighbors’ information INPUT GRAPH

» Generate final output for specific purpose (e.g. averaging node features to get node level prediction)
(2) Combining

(3) Readout
(I+1) (H j: m T| l» make node level prediction,

graph level prediction, etc.

Update
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https://medium.com/neuralspace/graphs-neural-networks-in-nlp-dc475eb089de



Basic information

Attention mechanism

« Definition
» Determining which neighbor’s information

should more considered to update the

hidden states of target node

softmax;

 Similar node should be considered as

important information

concat/avg /7
>\ h]

* To calculate ‘attention score’, we need to

define the attention mechanism to assess

the similarity between target node and ~—— ~

neighbor node (e.qg. dot product, usin
g ( g P g [Figure from Velickovi¢ et al. (ICLR 2018)]

trainable parameters, etc.)



mRNA expression

FS DGCN (dynamic graph convolutional network with feature selection)

Architecture

« Graph structure learning

Initial graph (A4) is cosine similarity matrix of original input data

Learned graph (S) is cosine similarity matrix of weighted cosine similarity

Updated graph (4) is weighted sum of those two graph

Constraints for smoothness (to make edge between similar node) and sparsity (to avoid trivial

solution (5=0), limit total edges and make learned graph closer to initial graph) were considered
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Features

FS DGCN (dynamic graph convolutional network with feature selection)

Feature selection

 Feature selection with correlation

« Inner product regularization on the feature indicator matrix to select features with high similarity

» This regularization makes feature indicator matrix sparser (removing uninformative features)

Embedding

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

2
Lre = [[Wrwill, = [[wrll,

.

Wr Score Matrix

0.43

0.21

Score Vector Ranking



MOAM (Multi-omics attention mechanism)
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* Purpose . S
« different types of omics data will generate the .
embedding representations of different quality

and have different contributions for downstream

classification tasks

* Procedure
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OIRL (Omic-integrated representation learning)

* Purpose
« Considering 1) commonalities between omics and 2) complementarity of different omics
* Preparation

* Key, query, value matrix are made from embedding matrix with learnable parameters

 E.g. Query matrix for specific patient Q, = %Zp
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OIRL (Omic-integrated representation learning)

 Procedure

« Calculate inter-omic attention matrix (H,), which is how much concern the i omic has for the j" omic

of patient p using query value of it omics and key values of ji" omics data
» Calculating the attention score matrix I7p by multiplying inter-omic attention matrix H, and value

matrix V" for the value vector of each omics
« Multi head attention (different type of view) can capture different perspective information
« Common representation
* Vectorize (row-wise concatenate) all attention score matrix, and uses them as input of 2-layer neural network
 Output of feedforward network is omics common representation (hy™)
« Complementary representation

+ Attention matrix itself can be regarded as more complex complementary information between omics for

patient

* Vectorize (row-wise concatenate) all attention score matrix to get complementary representation (h;p)



Optimization

* Objective function
« Minimizing loss for both of 1) FSDGCN, and 2) prediction error of MLP model

* There are hyper parameter u to balance both errors
2 = Zm IEIE“.SDGCN + uLamrp (Y}?H)
« Loss for FSDGCN also have two hyper parameters «a, § to balance each sub-loss

Liihaen =2 (Y, Vrspoon ) + a " (8, X, 4) + B (W)

« Training strategy — alternate update
1) Pretrain the omic-specific FSDGCN
2) Fix both of MOAM and OIRL and updating minimize the loss of FSDGCN
3) Fix FSDGCN part and update other two modules

4) Repeat 2~3 until convergence
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Evaluation & Experimental details

Evaluation metrics

« accuracy (ACC) Actual Value
(as confirmed by experiment)

« # correctly predicted / # total samples

positives negatives
Q ey ]
« Precision / Recall ERE > TP FIP
M o = True False
Precision = % Recall = TPTP N -Z E_ a Positive Positive
T + E E )
gy & FN TN
* F1 score (for the binary classification) o T False True
. a s [ Negative Negative

F1 Score =

1 1
Precision Recall

B 2 X Precision X Recall

Precision + Recall

https://devopedia.org/confusion-matrix, https://www.v7labs.com/blog/f1-score-quide



https://devopedia.org/confusion-matrix
https://www.v7labs.com/blog/f1-score-guide

Evaluation & Experimental details

Evaluation metrics

» average F1 score weighted by support (F1_weighted)

« Taking weighted average of f1-scores for specific label

« Weight is proportional to number of label

* macro-averaged F1 score (F1_macro)

« Taking simple average of f1-score for specific label

TP FP FN Precision Recall f1-score
A 1 2 1 0.33 0.50 0.40
=1/(1+2) =1/(1+1) |=20.33'0.5/(0.33+0.5)
B 1 2 2 0.33 0.33 0.33
C 3 1 2 0.75 0.60 0.67
A 5 5 5




Evaluation & Experimental details

Dataset & Experimental detail

KIPAN dataset for kidney cancer
type classification

SCC dataset for pan-cancer
classification related to squamous
cells carcinomas

BRCA dataset for breast invasive
carcinoma PAM50 subtype
classification

5-fold CV approach was used

Number of features for training mRNA.

Dats Cat .
ataset ategoties meth, miRNA
KIPAN KICH:65. KIRC:321. KIRP:274 3000, 3000. 1535
CESC:306, HNSC:497,
' 2000, 2000, 1652
SCC L USC:365 000, 2000. 16

Nommal-like:115. Basal-like:131.
BRCA HER 2-enriched:46. 1000. 1000, 503
Luminal A:436. Luminal B:147

Note: mRNA refers to mRNA expression data, meth refers to DNA methylation data, muRNA
refers to miRINA expression data.



Results 1

Parameters analysis

» Choosing best hyper parameters
» k: determines the average number of aggregated neighbor nodes for the FSDGCN module

« fea_num: determines the embedding dimension of feature indicator matrix
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Results 2

Comparison experiments

* vs. GCN methods
« MOGLAM outperformed always
outperformed MOGONET and
MoGCN

* vs. machine learning methods
« XGBoost and SMSPL worked
better for simple task (e.g. pan-
cancer classification)
« However, these method seems like
sensitive with data type (Low

performance on BRCA data)

Table 1. Classification performance of all methods on BRCA dataset.

Method

XGBoost

NN

BPLSDA

BSPLSDA

SMSPL

MOGONET

MoGCN

MMGL

MOGLAM

ACC

0.7566 £ 0.029

0.7604 £ 0.018

0.6234 + 0.006

0.6266 + 0.005

0.7310 £ 0.031

0.7886 £ 0.021

0.8190 + 0.025

0.8030 £ 0.050

0.8380 + 0.023

F1_weighted

0.7488 + 0.030
0.7574 £ 0.019
0.4906 + 0.006
0.4938 £ 0.005
0.7468 + 0.028
0.7740 £ 0.029
0.8196 + 0.027
0.7912 £ 0.069

0.8456 * 0.022

F1_macro

0.6876 £ 0.038
0.7030 £ 0.027
0.3074 £ 0.010
0.3146 + 0.007
0.7104 + 0.031
0.7254 + 0.037
0.7930 + 0.026
0.7398 + 0.082

0.8124 £ 0.028




Results 3

Visualization of the embedding representation
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Results 4

Ablation studies

« Using 4 variants by removing specific module of MOGLAM
(1) FSNN_MOAM _OIRL: using fully connected network instead of GCN part in FSDGCN module
(2) FSGCN_MOAM_OIRL: removing feature selection part
(3) FSDGCN_MOAM_ concat: concatenate the omics embeddings directly instead of considering both
of complementary and common information

(4) FSDGCN_OIRL: removing multi-omics attention mecahnism



Results 4

Ablation studies

Comparison results

Table 3. The results of ablation study on BRCA dataset.

The performance of MOGLAM was
superior to other variants
FSDGCN_MOAM _concat works

poorly, which shows simple

concatenation of embedded

information cannot provide

meaningful insight

ACC F1_weighted F1_macro
FSNN_MOAM_OIRL 0.8198 + 0.004 0.8280 £ 0.004 0.7978 £ 0.005
FSGCN_MOAM_OIRL 0.8282 £ 0.028 0.8372 £0.027 0.8116 £ 0.033
FSDGCN_MOAM_concat 0.8122 +0.017 0.8194 £ 0.015 0.7914 £ 0.020
FSDGCN_OIRL 0.8342 + 0.020 0.8420 £ 0.019 0.8060 + 0.018
MOGLAM 0.8380 £ 0.023 0.8456 + 0.022 0.8124 £ 0.023

Table 4. The results of ablation study on KIPAN dataset.

ACC F1_weighted F1_macro
FSNN_MOAM_OIRL 0.9608 £ 0.008 0.9610 + 0.008 0.9500 +0.012
FSGCN_MOAM_OIRL 0.9616 + 0.010 0.9620 £ 0.010 0.9534 £ 0.014
FSDGCN_MOAM_concat 0.9606 £ 0.012 0.9610 £ 0.012 0.9518 £ 0.014
FSDGCN_OIRL 0.9618 £ 0.010 0.9620 £ 0.009 0.9528 + 0.013
MOGLAM 0.9650 * 0.007 0.9650  0.007 0.9566 £ 0.011




Results 5

Important biomarkers identified by MOGLAM

Biomarker discovery
« Using feature indicator matrix, scores for each features were calculated and ordered

« Top 10 markers were considered as biomarkers of each omic

Table 5. The top 10 biomarkers of each omic were selected by MOGLAM on BRCA dataset.

Omics data type  Biomarkers

mRNA expression ESR1, SOX11, DEK, FABP7, ABCC11, Clorf106,
DNMBP, ANKRD30A, AGR3, SPDEF

DNA methylation ACSM2A, NLRPS, TKTL2, SNORA42, PIK3C2A,
ATP8B1, KSR1, Clorf110, MIR128-1, ZNF516

miRNA expression hsa-mir-375, hsa-mir-187, hsa-mir-190b, hsa-mir-29a,

hsa-mir-135b, hsa-mir-25, hsa-mir-9-1, hsa-mir-577, hsa-mir-149, hsa-mir-183

Also applying further analysis (GO enrichment test, survival analysis, etc.)
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Conclusion

* MOGLAM includes three modules: FSDGCN for omic-specific learning, MOAM to consider
different importance of each omics data, OIRL to integrate the omics specific embedding with
considering both of complementary and common information

« MOGLAM performs better than other GCN based method or simple machine learning based
methods

« MOGLAM can also efficiently identify meaningful potential biomarkers for each omics data

without additional feature selection methods
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