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moBRCA-net: a breast cancer subtype classification 
framework based on multi-omics attention neural 

networks
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1.   Introduction
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Background 

1. Introduction

- Breast cancer is a highly heterogeneous disease that comprises multiple biological components. 

- Owing its diversity, patients have different prognostic outcomes 

→  That’s why early diagnosis and accurate subtype prediction are critical for treatment. 

- Standardized breast cancer subtyping systems, mainly based on single-omics datasets, have been 

developed to ensure proper treatment in a systematic manner. 

- Recently, multi-omics data integration has attracted attention to provide a comprehensive view of 

patients but poses a challenge due to the high dimensionality. 

- Also, deep learning-based approaches have been proposed, but they still present several limitations
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Background 

1. Introduction

- The present study introduces moBRCA-net, a breast cancer subtype classification framework 

utilizing multi-omics data. 

- It integrates datasets through feature-selection modules considering biological relationships between 

(1)DNA methylation, (2) gene expression and (3) microRNA expression. 

- Additionally, a self-attention module is applied to learn feature importance at the omics level, 

transforming each feature to a representation reflecting its significance for classification.

 → These representations are concatenated and fed into fully connected layers for predicting breast 

cancer subtypes in patients.
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2.   Materials & methods
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Materials  
< Datasets > :The breast cancer (BRCA) cohort datasets

● From TCGA
1. Gene expressions
2. DNA methylation
3. microRNA expression

* Patients who did not have all three omics data available were excluded. 
*Breast cancer subtype information for each TCGA BRCA sample was retrieved from PAM50  
*Total of 1059 samples were divided into 5 subtypes, as shown in Table 1.
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2-1. Materials

*PAM50 : a gene set used to classify 
different molecular subtypes of breast 
cancer based on the analysis of molecular 
characteristics in tumor samples.



How to preprocessing?  

< From the Cancer Cell Line Encyclopedia (CCLE)>

1. Gene expression data: 

2. microRNA data:  

step 1) remove which read counts were not available for all samples.

step 2) After calculating size factors, the read counts were normalized by library size 

and were log transformed using DESeq2.
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2-1. Materials



How to preprocessing?  

< From the Cancer Cell Line Encyclopedia (CCLE)>

3. DNA methylation data : 

step 1) Both DNA methylome datasets measured by Illumina Human Infinium 450 K 

and 27 K platforms were used, with common features of both datasets being used for 

further analysis.

step 2) To eliminate the bias caused by a high frequency of missing values during 

model training, median imputation was performed, in which CpG sites with missing 

values for all samples were removed.
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2-1. Materials

→ Therefore, 20,400 genes, 19,977 CpGs, and 1597 microRNAs were used!
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About model architecture
2-2. Methods

Preprocessing

Step1 Step2

Step3



Step 1) Multi-omics data integration

2-2. Methods

▪ Feature selection module
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✔  1) Identifying informative genes as breast cancer signatures through 
differential analysis, yielding 1000 DEGs with high log-fold change and 
low adjusted p-value

→ Genes with an absolute value of log (fold change) greater than 2 
and an adjusted p-value less than 0.01 was considered as 
differentially expressed genes (DEGs).            

✔  2) Forming CpG clusters near DEG promoter regions to capture 
epigenetic relationships

*promoter-associated CpGs play important roles in gene silencing, 
genomic imprinting, and cancerogenesis.

→ After preprocessing, CpGs within 2 kb of the promoter regions of 
each DEG were grouped to form a cluster, where the average of the 
beta values were calculated.
→ DEGs without matched CpGs in the preprocessed dataset were 
filtered out to focus on features related to other omics.

        



Step 1) Multi-omics data integration

2-2. Methods

▪ Feature selection module
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✔  3) Selecting microRNAs interacting with the identified DEGs using the 
TargetScan database for comprehensive multi-omics integration.

→microRNAs control the function of their target mRNAs by 
downregulating the expression of their targets.

→ Thus, they have been recognized as drivers of diverse disease 
conditions including cancer . 

→ microRNAs showing target interaction with the identified DEGs 
were selected based on the TargetScan database.         



Step 2) Omics-level feature importance learning
2-2. Methods

▪ Omics‑level self-attention module
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✔ To identify crucial features for classifying breast cancer subtypes  and 
better understand the relative importance of those features

      < self-attention > 

step1) Utilized random vectors to create k-dimensional embedding vectors for 

each feature, transforming the original input data x into a new representation x̂.

* Given a set of original input data x ∈ Rn, where n :  dimension of the input data

* They defIned the k-dimensional embedding vector ei for each feature i ∈ {1 : n} 

using random vectors and represented xi to xˆi via multiplication 



Step 2) Omics-level feature importance learning

2-2. Methods

▪ Omics‑level self-attention module
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< self-attention > 

step2) Assigned an attention score α to each feature x̂ to determine its 

importance in predicting breast cancer subtype.

→ Calculated attention scores using a series of mathematical operations involving 

weights (WFC, Wh1, Wh2) and a bias term

* WFC, Wh1, and Wh2: weights 

* b : bias term

* si i: attention score that represents the importance of 

each feature 

* xˆi : which was converted to a normalized weight αi by 

applying the softmax function. 

✔ To learn the level of importance for each feature to predict breast cancer 
subtype, each feature xˆi was assigned an attention score αi 

      



Step 2) Omics-level feature importance learning
2-2. Methods

▪ Omics‑level self-attention module
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< self-attention > 

step3) Normalized the attention scores α using the softmax function, ensuring 

they sum up to 1 for relative importance assessment.

→ Computed dense feature representations c by combining the encoded feature 

vectors x̄ with their normalized attention scores α.

→  By self-attention module independently to each omics dataset, concatenated the 
transformed features, and fed them into the subtype classification module.

*Based on the calculated values, 
xˆi was transformed to a dense 
feature representation ci by the 
weighted sum of the encoded 
feature vectors x¯i and their 
normalized attention scores αi. 



Step 3) Subtype classification

2-2. Methods

▪With two fully connected layers
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✔  Classification module was constructed with two fully connected layers 
followed by the softmax function layer to achieve the final breast cancer 
subtype classification. 

✔ moBRCA-net was trained to minimize the cross-entropy loss.

      

* C :# of breast cancer subtypes

           : true (model predicted, respectively) subtype probability distribution. 

✔   To prevent overfitting, dropout was applied, and L2 regularization was 
also added to the loss function.

      



Step 3) Subtype classification

2-2. Methods

▪Hyper parameter & optimization

17

✔  Adam optimization algorithm for training.
✔ Split the dataset into 70% training and 30% test sets

→ repeated three times for each hyperparameter combination, and the 
architecture showing the best average accuracy.
→ best result was set as our moBRCA-net model!

✔ Set embedding vector dimension(k) to 128, encoding vector dimension (x¯) to 64, 
and attention vector dimension (s) equal to the number of features.

      
*Embedding Vector Dimension (k): used to represent categorical variables or discrete features in a continuous vector space.

*Encoding Vector Dimension (x̄): represents the internal state or a data point in a neural network.

→ It is a continuous vector that summarizes the information extracted from the input data.



Step 3) Subtype classification

2-2. Methods

▪Hyper parameter & optimization
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✔  Adam optimization algorithm for training.
✔ Split the dataset into 70% training and 30% test sets

→ repeated experiments three times to select the best model based on 
average accuracy.

✔ Set embedding vector dimension(k) to 128, encoding vector dimension (x¯) to 
64, and attention vector dimension (s) equal to the number of features.

✔ Hidden layer : two fully connected layers with 200 and 5 hidden nodes
✔ Activation function :LU activation function
✔ Dropout rate : 0.7 for both omics-level attention and classification module 

training.
✔ Learning rate : 0.01 & Epochs:5000

      



Step 3) Subtype classification

2-2. Methods

▪Hyper parameter & optimization
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✔  Adam optimization algorithm for training.
✔ Split the dataset into 70% training and 30% test sets

→ repeated experiments three times to select the best model based on 
average accuracy.

✔ Set embedding vector dimension(k) to 128, encoding vector dimension (x¯) to 
64, and attention vector dimension (s) equal to the number of features.

✔ Hidden layer : two fully connected layers with 200 and 5 hidden nodes
✔ Activation function :LU activation function
✔ Dropout rate : 0.7 for both omics-level attention and classification module 

training.
✔ Learning rate : 0.01 & Epochs:5000

      



3. Results
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✔ moBRCA-net (omics-attn) outperformed other classifiers with an average accuracy of 0.891, F1-score of 0.887, 
and MCC of 0.831.

1) Evaluation of moBRCA-net performance
3. Results
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✔ To evaluate the ability of moBRCA-net to classifying breast cancer subtypes
                → so let’s compared its performance with that of widely-used machine learning(ML)-based classifiers! 

- The study optimized moBRCA-net and baseline 
methods using a 7:3 split of the TCGA-BRCA 
dataset for training and testing.

- Hyperparameters were fine-tuned through grid 
search, with each combination tested five times 
for accuracy. 
→ Specific hyperparameters were selected for 
SVM, RF, and LR classifiers. 

- Tenfold cross-validation was applied, using 
training data for integration and model training, 
and testing data solely for performance 
evaluation.



✔ moBRCA-net (omics-attn) outperformed other classifiers with an average accuracy of 0.891, F1-score of 0.887, 
and MCC of 0.831.

1) Evaluation of moBRCA-net performance
3. Results
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✔ To evaluate the ability of moBRCA-net to classifying breast cancer subtypes
                → so let’s compared its performance with that of widely-used machine learning(ML)-based classifiers! 

- The study optimized moBRCA-net and baseline 
methods using a 7:3 split of the TCGA-BRCA data

* The Matthews Correlation Coefficient (MCC) : 

*previous other study’s results

 0.829  0.830



1) Evaluation of moBRCA-net performance
3. Results
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✔ To evaluate the ability of moBRCA-net to classifying breast cancer subtypes
                → so let’s compared its performance with that of widely-used machine learning(ML)-based classifiers! 

● Subtype Wise performance result



1) Evaluation of moBRCA-net performance3. Results
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✔ But still the data imbalance issue could impact the prediction performance in a subtype-specifIc fashion, 
where there is a large difference between the number of samples for each subtype.

→ so let’s adopted a data augmentation based on the deep generative model to enlarge the training dataset size.

● +) Conditional Variational Autoencoder (CVAE) for data generation
: a type of generative model used in machine learning. 
→ It's particularly useful for generating new data samples that are similar to a given dataset.

-  It composed of a two-layered encoder and decoder, estimated the conditional 
distribution using latent variables and data, generating samples for specified breast 
cancer subtypes.

-  In each fold of tenfold cross-validation, the CVAE was optimized using the training 
dataset and generated samples to match the same number of samples for the "Luminal 
A" subtype, which had the largest number of samples. 

→ These generated samples were incorporated during the training of moBRCA-net, and 
the performance was evaluated on the testing dataset. 

* conditional information: the subtype of breast cancer 



1) Evaluation of moBRCA-net performance3. Results

✔ The overall performance of moBRCA-net as well as the subtype-wise performance slightly improved compared 
to the model trained without the generated dataset. 

✔ These results support that data augmentation strategy could help to alleviate the impact from the imbalanced 
dataset while training our model. 
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✔ But still the data imbalance issue could impact the prediction performance in a subtype-specifIc fashion, 
where there is a large difference between the number of samples for each subtype.

→ so let’s adopted a data augmentation based on the deep generative model to enlarge the training dataset size.

● +) Conditional Variational Autoencoder (CVAE) for data generation



2) Effectiveness of each module in moBRCA-net3. Results
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✔ To investigated the performance improvement of moBRCA-net by the introduction of the omics-level attention 
modules for feature importance learning

→ so let’s implemented a single-attention module was applied to all features at once(single-attn), and in the other 
the attention module was removed to directly classify the breast cancer subtypes(no-attn).

✔ These experiments also suggest that applying attention at the proper level has an impact on learning the 
features and modeling the classification module.

 0.864 0.872 0.887



3) Breast cancer subtype prediction improvement 
by multi‑omics integration

3. Results

✔ When utilizing CpG clusters, the average classification performance significantly improved for DEGbased method (from F1-score of 0.864 
to 0.908) and RF (from 0.845 to 0.866) SVM-RFE showed a slight performance increase (from 0.86 to 0.866). 

✔ CpG cluster-based approaches achieved the best accuracy and F1-score compared with single-CpG approaches for all cases using different 
feature selection methods. 
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✔ To validate whether utilizing multi-omics datasets could effectively improve the classification of breast cancer subtypes
→ let’s compared the performance when using different combinations of multi-omics datasets and a single-omics dataset.

- investigated the impact of the CpG clusters 
by comparing the classification performance 
of moBRCA-net based on single CpG-based 
multi-omics integration using different 
feature selection method

→ they assumed that CpGs located in regions relatively close to the promoter may share a similar methylation status, which could represent the 
methylation patterns related to breast cancers, consequently leading to performance improvement for subtype prediction.

* SVM-RFE (Support Vector Machine Recursive 
Feature Elimination)  : aimed at selecting the 
most important features from a given dataset.



3. Results

✔ moBRCA-net showed a relatively higher performance when trained based on multi-omics compared with 
single-omics data

✔  These results indicate that multi-omics data provides more comprehensive information to distinguish breast 

cancer subtypes.
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✔ To validate whether utilizing multi-omics datasets could improve the classification of breast cancer subtypes
→ compared the performance when using different combinations of multi-omics datasets and a single-omics dataset.

3) Breast cancer subtype prediction improvement 
by multi‑omics integration



4) Interpretation of omics‑level attention 
for breast cancer subtype classification

3. Results
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✔ To understand how omics-level attention helped improve the performance of the model 
→ let’s interpreted the attention scores of moBRCA-net. 

1)  To directly compare the 
abundance difference between the 
feature subtypes with the highest 
attention scores

→  visualized the normalized gene 
expression values and beta values 
of those features obtained from 
samples of each breast cancer 
subtype

✔  Overall, they could conclude that the features with the highest attention scores showed significant differences 
across the five subtypes with p-value < 0.01, indicating that the attention module trained moBRCA-net to assign 
more weights for the features having discriminative power for classifying the subtypes.



4) Interpretation of omics‑level attention 
for breast cancer subtype classification

3. Results
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2)  Also, they  hypothesized that the attention module would assign more weight to the biologically relevant features 
and identify the features showing a negative correlation (< −0.5) for each subtype.

→  so  from each omics dataset, 200 features showing the highest average attention scores across patients were 
selected and the Pearson correlation between those features was analyzed. 

✔  They identified feature pairs showing a negative correlation in different breast cancer subtypes, excluding the pairs of the 
normal-like subtype. 

✔ These results were consistent with that of recent reports that showed that basal-like cancers more frequently present 

abundant NDRG2 expression in association with CpG-hypomethylation, with is associated with aggressiveness and 

unfavorable outcomes in the basal-like subtype

ex) NDRG2 showed a negative correlation with the CpG cluster composed of cg14030359 and cg18081258 in the basal subtype,      
STAT5 showed negative correlation with the CpG cluster composed of cg03001305 and cg16777510 in the luminal A, B, and 
basal-like subtypes.

 +) DNA methylation shows distinct patterns for each breast cancer subtype

→ thus, it has the potential to be used as a subtype-specific marker.



4. Conclusion & Discussion 
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Conclusion  

32

4. Conclusion & Discussion

 Novelties in their moBRCA-net

1) Multi-Omics Integration: gene expression, DNA methylation, and microRNA expression by maintaining  
their biological relationships. 

→ This enables a comprehensive understanding of the molecular landscape of breast cancer.

2) Self-Attention Mechanism: allows the model to dynamically weigh the importance of different features 
within each omics data type. 

→ This enhances the model's ability to discern critical features for accurate classification.

3) Feature Importance Learning: learns the importance of each feature at the omics level. 

→ This means that it not only identifies important features, but also transforms them into new 
representations that reflect their significance in the classification task.



Conclusion  
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4. Conclusion & Discussion

 Novelties in their moBRCA-net

4)  Performance Superiority: The study demonstrates that moBRCA-net outperforms established                   
machine learning methods in predicting breast cancer subtypes. 

→ This indicates its effectiveness in leveraging multi-omics data for accurate classification.

Results show that

✔ These experimental results confirmed that moBRCA-net has a significantly enhanced performance 
compared with other methods

✔ The effectiveness of multi-omics integration and omics-level attention were identified



Discussion  
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4. Conclusion & Discussion

1.  There will be potential for further improvement

✔  Due to the limitation of the computational resources, feature selection was performed to reduce 
the number of features for training our model. 

✔ If the model could learn the dependency between the omics features directly via graph network, 
it could potentially be able to extract useful relations between the features of different omics 
datasets.

→ So, they plan to extend our moBRCA-net platform to utilize graph neural networks.

 

→ By doing this, we will be able to improve the moBRCA-net 



Thank you for listening ☺
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