Host-Variable-Embedding Augmented Microbiome-Based Simultaneous Detection of Multiple Diseases by Deep Learning

Shunyao Wu et al.

Published: Advanced Intelligent systems, September 21, 2023

Woobeen Jeong November 2, 2023

Interdisciplinary Program in Bioinformatics, Seoul National University

Contents

- Introduction
- Materials and Methods
 - Host-variable-embedding
 - MMoE: Microbiome-disease association
 - Cross network: Feature interaction
 - MSI : Feature importance based on SHAP
- Result
- Discussion

Introduction

• Microbiome is a promising predictor of human disease.

• Previous studies have presented only one definitive status of each specimen from microbiome cohorts, either healthy or with a specific disease.

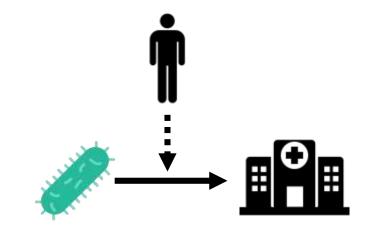
• To address these issues, a highly explainable deep learning (DL) method based on deep neural network (DNN) called Meta-Spec is proposed

Problem1. Single-label classification

- In classifier, simply predicting only one disease or status (as a single-label) from microorganisms has a significant limitation.
- It ignores prevalence of comorbidities in actual cohort.
- American Gut Project (AGP) ~61% patients were diagnosed with at least two disease.
- Even if the microbiome of the single disease and that of comorbidities share common biomarkers, they may have different microbial pattern.
- To provide interpretation considering the combination of diseases from microbial data, through a multi-label classifier.

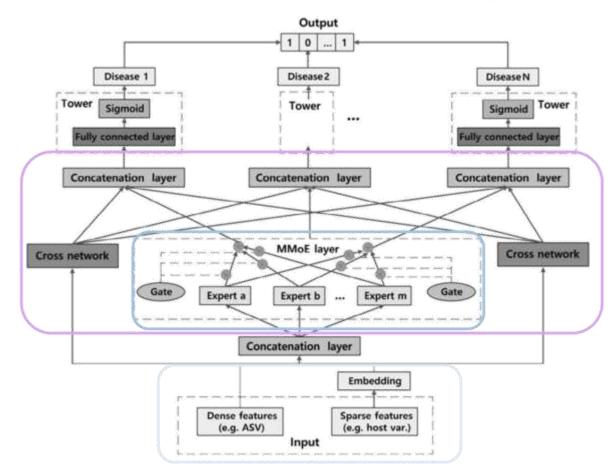
Problem2. Host phenotypes drive changes in microbiota

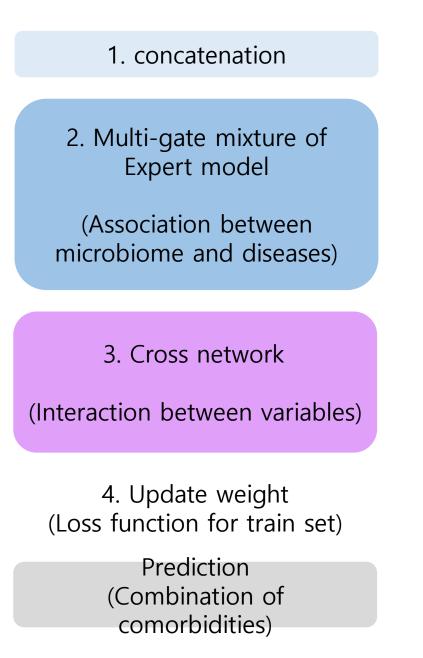
- Host phenotypes such as physiological traits, lifestyle, etc. have not been fully utilized in models
- This information may disrupt the microbiome-based disease prediction.
- For an example, Age is one of the major risk factors for cardiovascular disease and is also associated with Crohn's disease.
- Therefore, even if a person have a normal microflora, she can still develop the disease due to her age. and it can interferes with prediction.



Meta-Spec

- Quantifying the relative contributions of each status include microbial and host features.
- Allow us to interpret the confounding factors.





Multi-label classification

	ASV1	ASV2	ASV3	ASV4
Sample1	0.001	0.45	0	0
Sample2	0.2	0	0	0.003
	•••	•••	•••	•••

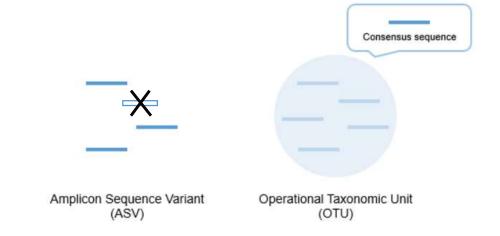
- Microbial feature (genotype)
 - ASV (amplicon sequence variants)
 - = High abundance reads from removing similar low ones.
 - OTU (operational taxonomy units)
 - = Reads with 97% similarity.

	Age	BMI	
Sample1	3	2	
Sample2	1	2	
	•••		

- Host variables (phenotype)
 - categorized

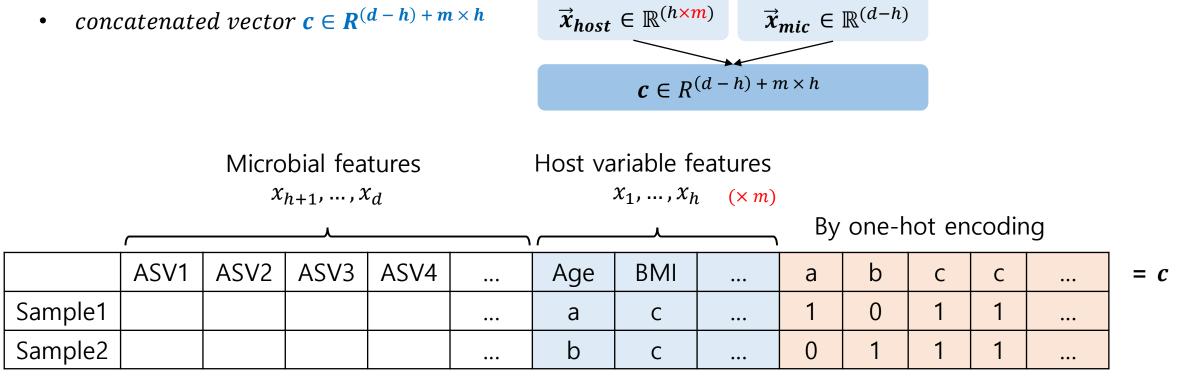
	Diabetes	Thyroid		•
Sample1	0	1		
Sample2	1	1		
	•••	•••	•••	

Disease Label



Host variable embedding

- vector $x = (x_1, ..., x_h, x_{h+1}, ..., x_d)$
- Since $(h \ll d h)$, Imbalanced feature numbers cause dilution of host variable features.
- m dimensional embedding vector for each host variable feature. (m = 128)



Basics of DNN

 Deep Neural Network: Network consisting of 3 or more layers with 2 or more hidden layers

$$\hat{y} = g(z_i) = g\left(\sum_{i=1}^{n} \overline{w_i} \, \overline{x_i} + \vec{b}\right)$$

$$g(z) = activation function, \quad \overrightarrow{w_i} from loss function$$

• Example: Multi-class classification on DNN

$$g(z)_{i} = \frac{e^{z_{i}}}{\sum_{i=1}^{n} e^{z_{i}}} = softmax(z)_{i}$$

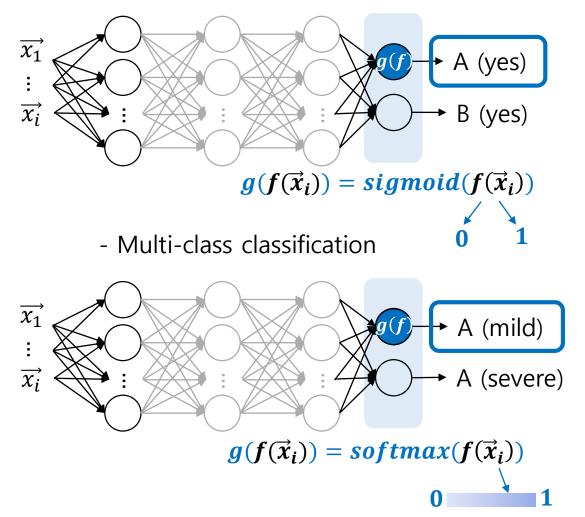
for $i = 1, ..., n$ and $z = (z_{1}, ..., z_{n}) \in \mathbb{R}^{n}$

$$L(\hat{y}, y) = -\sum_{c=1}^{C} y_c \log(\hat{y_c}), \quad cross \, entrophy$$

[Node] each $\vec{x_i} = \begin{bmatrix} x_1 \end{bmatrix}$... x_n $\overrightarrow{x_1}$ $\vec{W_1}$ $g(z_i)$ ŷ $\overrightarrow{x_i}$ Ŵi [DNN] $\overrightarrow{x_1}$ ł $\overrightarrow{x_i}$ Input Output Hidden layer $(\geq 2 \text{ layers})$

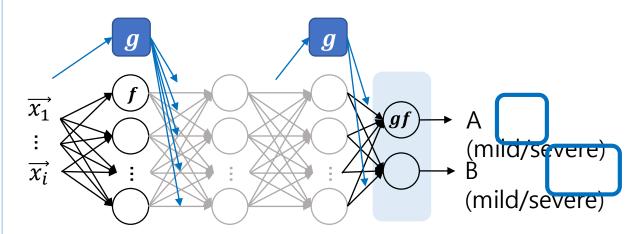
Single-label vs. Multi-label classifier

- Single-label classification
 - Binary classification



f(x) = Result from former layer

- Multi-label classification
 - MoE (Mixture of expert) classification



$$\sum_{i=1}^{n} \frac{g(\vec{x})_i f(\vec{x}_i)}{1} = \sum_{i=1}^{n} \frac{softmax(\vec{x})_i f(\vec{x}_i)}{1}$$
gate expert

Multi-label classifier

• Original Mixture-of-Expert (MoE) model:

$$y = \sum_{i=1}^{n} g(\vec{x})_{i} f_{i}(\vec{x}), \qquad \sum_{i=1}^{n} g(\vec{x})_{i} = 1$$
$$\underline{g(\vec{x})_{i}} = softmax(\vec{x})_{i} = probability for expert f_{i}$$

gate

$$g(\vec{x})_{1} \cdots g(\vec{x})_{n}$$

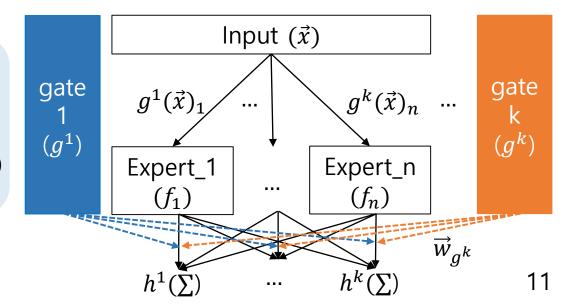
$$g(\vec{x})_{n} \cdots g(\vec{x})_{n}$$
Expert_1

$$(f_{1}) \cdots (f_{n})$$

$$\Sigma = \text{weighted sum}$$

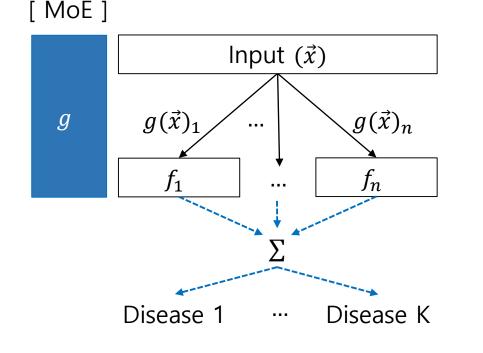
• Multi-gate Mixture-of-Expert (MMoE) model:

$$y_{k} = h^{k} \left(f^{k}(\vec{x}) \right)$$
$$f^{k}(\vec{x}) = \sum_{i=1}^{n} g^{k}(\vec{x})_{i} f_{i}(\vec{x}), \qquad \underline{g^{k}(\vec{x})} = softmax(\vec{w}_{g^{k}} \vec{x})$$

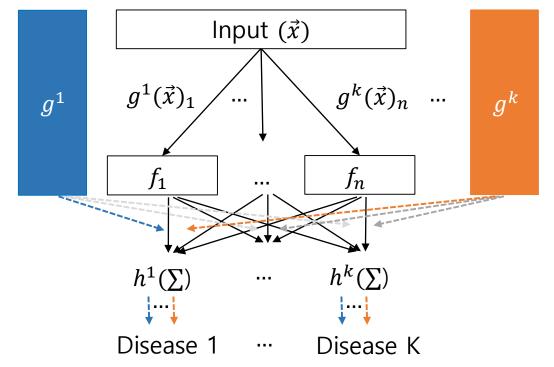


MMoE layer: Associations between microbiome and diseases

- The role of the gate in the MoE layer is to calculate the probability of going through the n th expert as a weighted sum.
- Therefore, there is only one gate for the n th expert, which does not select any expert.
- In the MMoE layer, k gates selectively select the n th expert, each summing to 1.



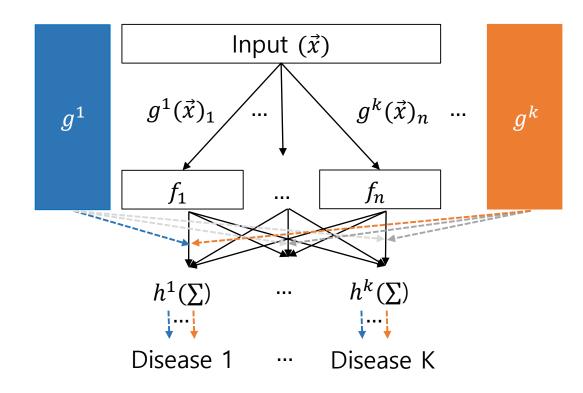
[MMoE]

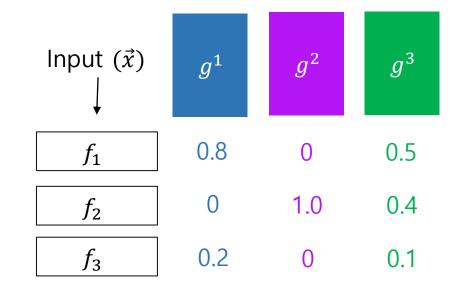


12

MMoE layer: Associations between microbiome and diseases

- The MMoE layer can detect selective combinations of relationships between the gates of each expert.
- The output can be described as a probability combination of certain gates, just like the disease.





given $f_1(\vec{x})$, gate1 and gate 3 affects = combination of Pr(diseases state)

MMoE layer: Associations between microbiome and diseases

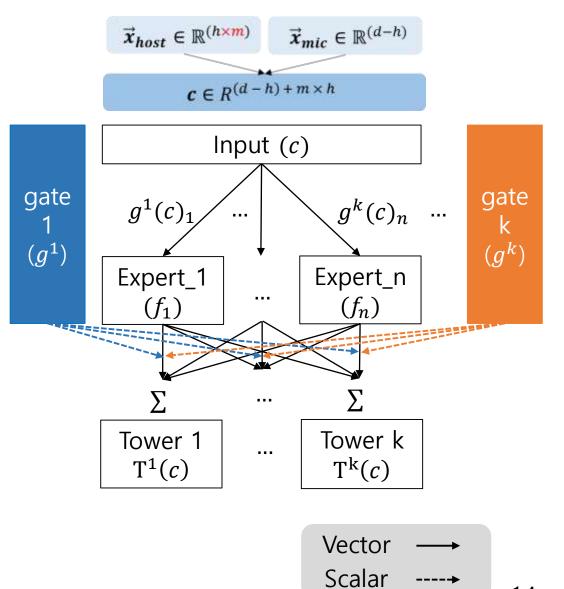
• By applying MMoE layer: (k = # of disease)

$$\underline{f^k(x)} = \sum_{i=1}^n \underline{g^k(x)}_i \underline{f_i(x)}, \quad g^k(x) = softmax(w_{g^k} x)$$

- Output of *n* th expert = $f_n(c)$ (for each *k*)
- Weight of k th gate $\doteq w_g^k \in \mathbb{R}^L$
- Tower network (for disease k):

weights from k th gate selective expert

 $T^{k}(c) = \sum_{n=1}^{k} \frac{w_{g}^{k}}{k} \frac{f_{n}(c)}{k}$



Cross network: Microbial interaction and host variable interaction

• Microbial interaction :

$$T_{cross}(\vec{X}_{mic}) = \vec{X}_{mic} \odot \left(\vec{w}_{mic} \vec{X}_{mic} + \vec{b}_{mic} \right) + \vec{X}_{mic}$$

• Host variable interaction :

$$T_{cross}(\vec{X}_{host}) = \vec{X}_{host} \odot \left(\vec{w}_{host} \vec{X}_{host} + \vec{b}_{host} \right) + \vec{X}_{host}$$

• Simply, Cross network
$$(X_i) = X_i \times (W_i X_i + b) + X_i$$

 X'_i

Concatenate cross networks with MMoE
 1

$$Output = sigmoid(\begin{bmatrix} T^{k}(c) & T_{cross}(\vec{X}) \end{bmatrix})$$

 \odot = Hadamard product

$$A \odot B = (A)_{ij}(B)_{ij}$$

$$\begin{bmatrix} a1 & b1 \\ a2 & b1 \end{bmatrix} \odot \begin{bmatrix} a'1 & b'1 \\ a'2 & b'2 \end{bmatrix} = \begin{bmatrix} a1 \times a'1 & b1 \times b'1 \\ a2 \times a'2 & b2 \times b'2 \end{bmatrix}$$

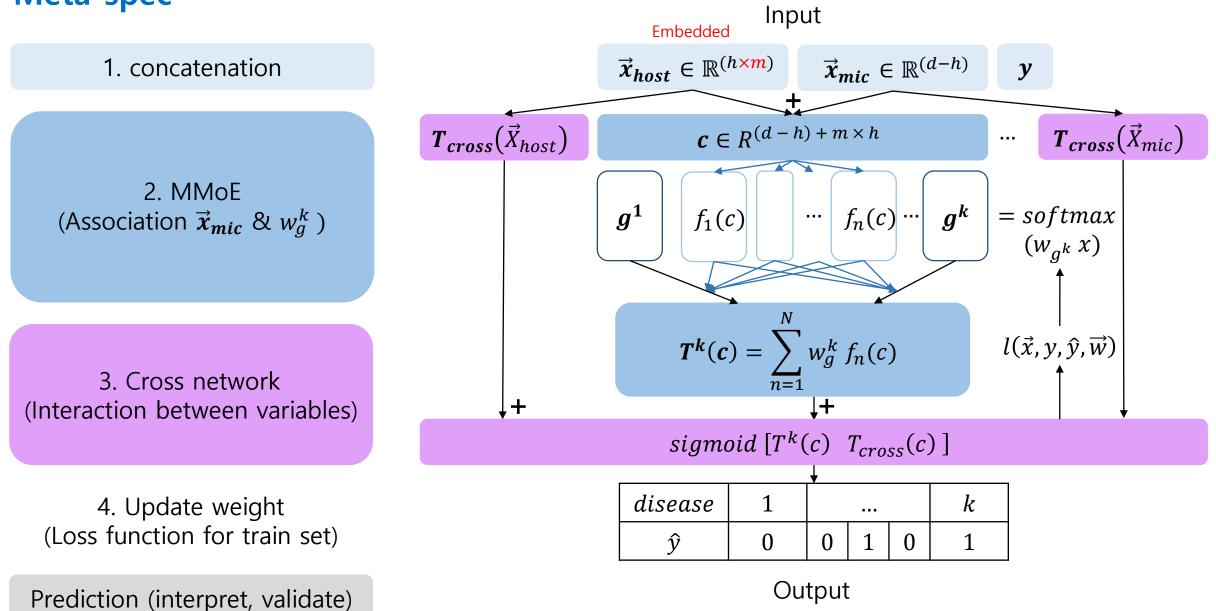
 T_{cross} = Cross network mic = Microbial features (ASV, OTU) host = Host variables (categorized)

$$\vec{X}_{mic} \in \mathbb{R}^{(d-h)}, \quad \vec{b}_{mic} \in \mathbb{R}^{(d-h)}$$

$$\vec{w}_{mic} \in \mathbb{R}^{(d-h) \times (d-h)}$$

$$\vec{X}_{host} \in \mathbb{R}^{(h \times m)}, \quad \vec{b}_{mic} \in \mathbb{R}^{(h \times m)}$$
$$\vec{w}_{host} \in \mathbb{R}^{(h \times m) \times (h \times m)}$$

Meta-spec



Loss function for

• Combined multi-task loss function:

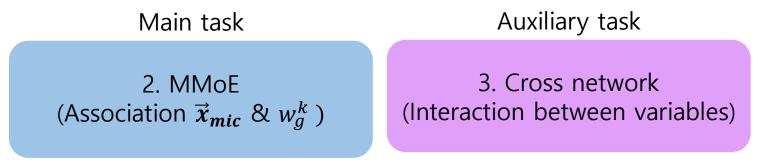
$$l(\vec{x}, y, \hat{y}, \vec{w}) = \sum_{k=1}^{K} \frac{1}{2 c_k^2} l_k(\vec{x}, y_k, \hat{y}_k, \vec{w}_k) + ln(1 + c_k^2)$$

 C_k = Trainable weight

 $l_k(\vec{x}, y_k, \hat{y}_k, \vec{w}_k) = \text{loss function for k th task}$

 \vec{w}_k = Network parameter

 To enable multi-task learning, we have to find a common representation in the earlier layers of the network.



- This way, it helps the network to be applicable to both auxiliary and main tasks.
- It can also act as a regularizer by optimizing the parameter space.

Meta-spec feature importance (MSI)

• MSI based on SHAP (Shapley additive explanation)

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_i x_i$$
$$= \beta_0 + \beta_1 x_1 + \beta_{12} (x_1 + x_2) + \dots + \beta_{1\dots i} (x_1 + \dots + x_i) + \dots$$
$$\mathsf{ML}, \mathsf{DL} \longrightarrow SHAP$$

simple model

Coef.

18

ŷ

 $\tilde{C}_i \geq 0$

$$SHAP = \phi_i(f) = \frac{1}{n} \sum_{S \subseteq \{x_1, \dots, x_n\} \setminus \{x_i\}} {\binom{n-1}{|S|}}^{-1} (f(S \cup \{i\} - f(S)))$$

$$\phi_i(\hat{y}) = \beta_i x_i - E(\beta_i X_i) = \beta_i x_i - \beta_i E(X_i)$$
$$\sum_{i=1}^N \phi_i(\hat{y}) = \hat{y}(x) - E(\hat{y}(X))$$

Proportion of a feature's contribution to the prediction
 Sature's contribution statements of the prediction

 $C_i = log(|median_j(SHAP_{ij})|$

$$\widetilde{C}_i = C_i - \min(C_i)$$

$$MSI_{i} = \frac{\widetilde{C}_{i}}{\sum_{i} \widetilde{C}_{i}} \times 100(\%)$$

	(disease k)	Feature 1		•••	Fe	eature i
	Sample 1					
	•••					
n	Sample j					
		C_1				C _i
			—	C _{min}		
		$ ilde{\mathcal{C}}_1$	0)		<i>Ĉ</i> _i

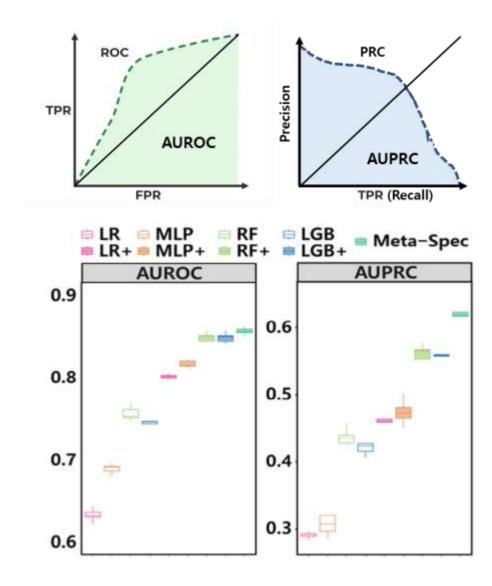
Dataset

- Produced by the American Gut Project (AGP) and Guangdong Gut Microbiome project (GCMP)
- datasets included patients with comorbidities.
- The 7 target diseases of AGP are autoimmune disease, lung disease, thyroid disease, cancer, IBD, Cardiovascular Disease and Autism Spectrum Disorder
- The 4 target diseases in Dataset2 are metabolic syndrome, gastritis, type 2 diabetes, and gout.

Dataset	Dataset 1	Dataset 2
Source	AGP US cohort ^[8]	GGMP cohort ^[23]
# of samples	5308	5347
sequencing type	16S amplicon	16S amplicon
# of healthy controls	1541	3067
# of patients	3767	2280
# of patients with comorbidities	1360	596
# of disease types	7	4
# of available host variables	71	27

Performance comparison

- Overall performance on dataset1 (AGP US)
- Since the number of sample were highly Unbalanced, We also compare the AUPRC
- To check overall performance, 4 comparison models were set up.
 - LR: logistic regression
 - MLP: multi-layer perceptron
 - RF: random forest
 - LGB: light gradient boost
 - + indicates one-hot coded metadata

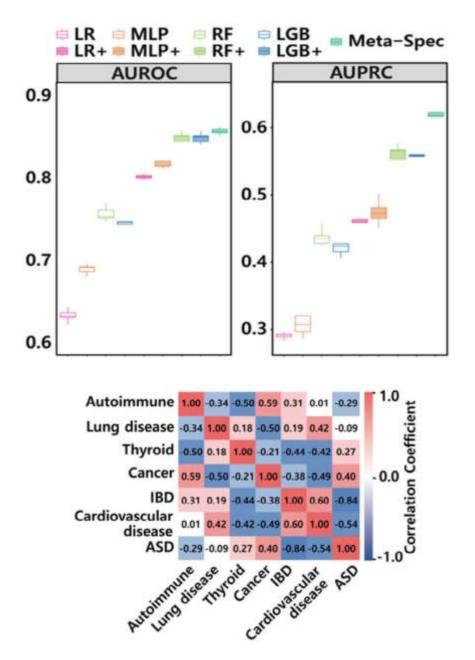


TPR = TP / (TP+FN) FPR = FP / (FP+TN) Precison = TP / (TP+FP)

		Actual	
		Р	Ν
Predict	Р	TP	FP
	Ν	FN	ΤN

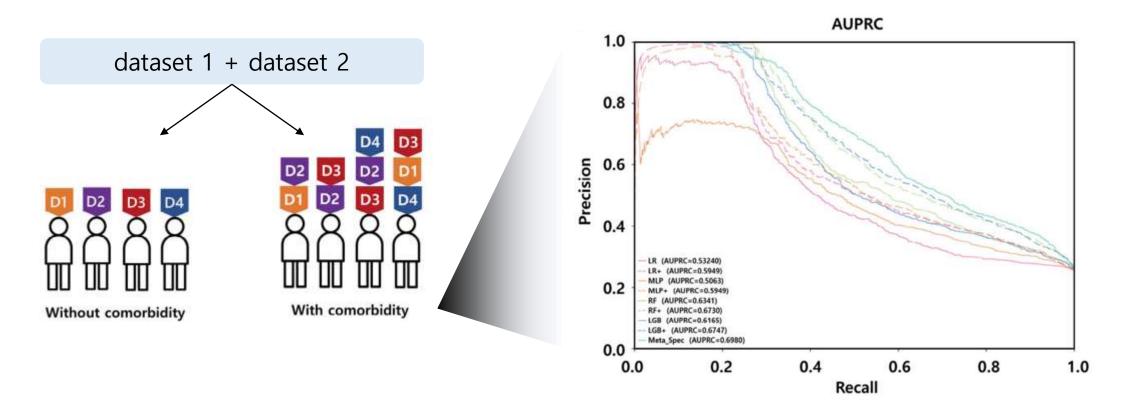
Performance comparison

- The performance of all models improved with the use of metadata.
- The best performance of both was from Meta-Spec.
- The ML method resulted in a low AUROC, which may be due to confounding effects.
- Looking at the Pearson correlation coefficient, disease correlation information is well reflected through MMoE strategy.



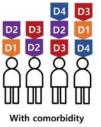
Disease correlation for Comorbidity detection

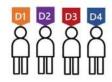
- As a Fact, 1,360 among 3,767 patients on dataset 1 have 2 or more diseases. (596) (2,280) (dataset 2)
- To reveal that correlation between diseases helps explain these comorbidities, divided the patients into two groups, with and without comorbidities.



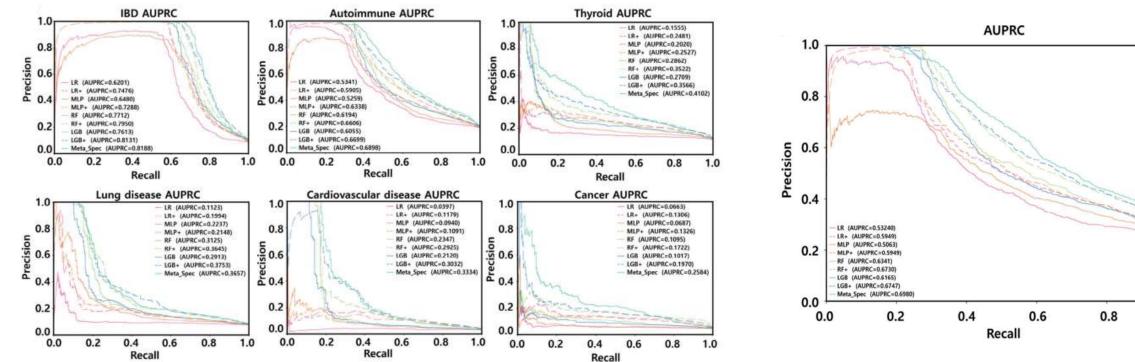
Disease correlation for Comorbidity detection

- Multi-label classification(Meta-Spec) shows higher performance than the other classifications.
- Models with single disease targets can miss comorbidity information, like thyoid or lung disease solely.





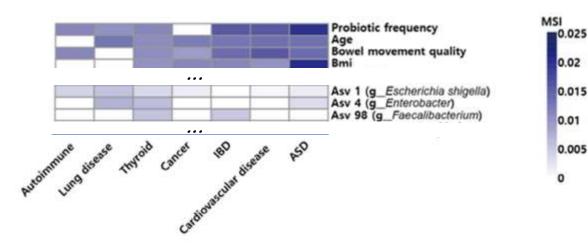
Without comorbidity

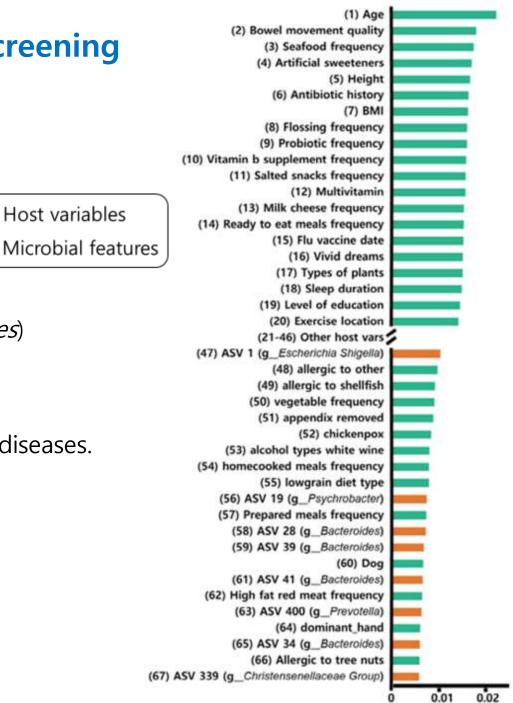


1.0

Feature selection for Multi-label disease screening

- Sorted by MSI (Meta-Spec Importance value), especially on cardiovascular disease.
- Age was the most important feature.
- Some microbiome features (*E.Shigella, Bacteroidetes*) have been reported on cardiovascular disease
- There are common features with high rank across diseases.





24

MSI

Discussion

• Predicting comorbidities considering the composite state of the host from microbial data using multiple datasets and cohorts is a challenging task.

• Using Meta-Spec enhances interpretability regarding the impact of microbial communities on diseases through the utilization of exclusive feature importance (MSI).

• Considering the influence of host data on disease screening is crucial, despite the well-established significance of the gut microbiota in human health.

Thank You